Strategies for Doubling Farmers Income in Himachal Pradesh

YSP University of Horticulture and Forestry Nauni, Solan 173230, Himachal Pradesh

Strategies for Doubling Farmers Income in Himachal Pradesh

Report Prepared

by

HC Sharma, Vice Chancellor, YSP University of Horticulture and Forestry, Nauni, Solan 173230 Himachal Pradesh. Email: vcuhf@yspuniversity.ac.in

State Coordination Committee Strategies for Doubling Farmers Income in Himachal Pradesh

JE

Chairman

Dr. HC Sharma, Vice Chancellor YSP University of Horticulture and Forestry, Nauni, Solan

Member Dr. Ashok Sarial, Vice Chancellor CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur

Member Dr. VP Sharma, Director ICAR - Directorate of Mushroom Research (DMR), Solan

Convenor Dr. SK Chakrabarti, Director Central Potato Research Institute (CPRI), Shimla

CONTENTS

Contents	Page
Preface	i
List of tables	ii
List of figures	iii
Composition of SCC	iv
Details of the meetings of the SCC	iv
Introduction	1
General profile of Himachal Pradesh	1
Infrastructure and programmes	4
Major constraints and productivity gaps	11
Potential for development and role of technology in doubling farmers' income	14
Implementation plan	31
Summary and recommendations	32
References	32
Annexure I: Technology modules from various KVKs of the state	33
Annexure II: Budget estimates for major inputs	46

Preface

Sustainability of agricultural production systems, and food and nutritional security are the major challenges due to global warming and climate change, increasing population pressure and over exploitation of natural resources. The farmers are heavily burdened through high cost of inputs, frequent droughts, increased severity of insect-pests and diseases, natural vagaries and uncertain market prices for the agricultural produce. Because of availability of food grains in the public distribution system at cheaper prices, craze among the youth for white collar jobs, crop damage by the stray cattle, monkeys and other wild animals, the farmers are giving up crop cultivation, and nearly 50% of the arable land in some parts of Himachal Pradesh is lying vacant, which is being increasingly infested by weeds or covered with bushes. Therefore, there is an urgent need to develop cost-effective alternative farming systems to increase farmers' income in Himachal Pradesh.

Because of fragmentation of land holdings, there is a need to focus on cooperative/ contract farming, reduce dependence on agriculture, and place greater emphasis on value chain systems, infrastructure development, and undertake policy reforms. Equally important is the need for a focussed approach by the centre and state governments to achieve the goal of doubling the farmers' income. The presentation made by Dr. Ramesh Chand, Member NITI Aayog, in the State Agricultural Universities (SAUs) Vice Chancellors and ICAR Directors Conference, 14-15 Feb 2017, and by Dr. M.S. Swaminathan before the Hon'ble Prime Minister on doubling the farmers' income led to creation of state strategic planning committees to develop the action plan for doubling the farmers' income by 2022.

Due to lack of irrigation and hilly terrain, most of the farmers are not able to take up protected cultivation and/or precision farming of high value cash crops on a large scale. Except sheep and goats, which are largely owned by the nomads, animal husbandry and poultry have not been taken up commercially in Himachal Pradesh. Limited transport and marketing facilities, and lack of storage and processing facilities are the other bottlenecks in turning farming into an economically viable enterprise. Cultivation of temperate fruits has made a huge impact in the mid- and high-hill regions of Himachal Pradesh, but the fruit cultivation has not been taken up on a commercial scale in the lower Shivalik Hills, which needs greater attention in the near future. One of the major steps to be undertaken for doubling farmers' income in Himachal Pradesh is to increase the area under irrigation to improve crop productivity. Protected cultivation of off season vegetables, precision farming, hydroponics and high-density plantings of different fruit crops should be undertaken on a large scale to increase farm incomes. Large scale production of flowers in niche areas, agro-forestry, mushroom cultivation, beekeeping, sericulture and medicinal plants can be used for diversifying the sources of farm income.

Extension services are equally important in spreading the knowledge to the farmers, and this can be most effectively achieved through the Krishi Vigyan Kendras (KVKs) located in each district. This document provides a blueprint and covers the technologies that could be adopted for increasing farm productivity, adoption of effective marketing reforms, value addition and processing, developing entrepreneurial skills and effective marketing policies. We are sure that this document will serve as a useful source of information for developing an action plan for doubling farmers' income in Himachal Pradesh.

We thank the scientists from YSP-UHF, Nauni; CSK-HPKV, Palampur; CPRI, Shimla; DMR, Solan; and Directorates of Agriculture, Horticulture, Animal Husbandry and Fisheries for their inputs in preparing this document. We also thank the coordinators of Krishi Vigyan Kendras for providing information on major farming practices in different districts of Himachal Pradesh. Our special thanks are to Dr Sudhir Verma, Mr Suchet Attri and the staff of the VCs office for their help in preparing this document.

Place: Nauni, Solan Date: 05/01/2018

Convener

(HJharms Chairman

State Level Coordination Committee

List of Tables

Table	Title				
1	General profile of Himachal Pradesh	1			
2	Description of different agro-climatic zones of Himachal Pradesh				
3	Major crops grown in different agro-climatic zones of Himachal Pradesh	2			
4	Average monthly income per agricultural household during 2012-13	3			
5	District wise number of fertilizer wholesale points and retail sale points in Himachal Pradesh	7			
6	District wise details of PCDOs	8			
7	District wise details of private registered nurseries	8			
8	Details of plant tissue culture laboratories	9			
9	Details of olive stations in Himachal Pradesh	9			
10	Veterinary institutions under Animal Husbandry Department	10			
11	The district wise details of plant protection centres	10			
12	Yield gap analysis in vegetable crops	11			
13	Yield gap analysis in fruit crops	11			
14	Estimate of monetary value of harvest and post-harvest losses in India				
15	Extent of post-harvest losses across commodity groups				
16	Marketing margins and farmers' share for major fruits and vegetables				
17	Increase in yield and water saving due to drip irrigation in vegetables				
18	Returns from protected cultivation of tomato, capsicum and cucumber at Solan, Himachal Pradesh	18			
19	Increase in income through protective cultivation of vegetables by using Low Tunnel Technology	18			
20	Increasing farmers' income through protected cultivation of flowers	18			
21	Returns from high density planting in apple	21			
22	Returns from high density planting of Kinnow	21			
23	Returns from improved cultivation of Kiwi fruit	21			
24	Increasing farmers' income through integrated honeybee keeping	23			
25	Increasing farmers income through mushroom cultivation	24			
26	Returns from ocimum cultivation under peach based agro-forestry system	25			
27	Comparative economics of livestock farming	26			
28	Implementation plan and institutional responsibilities	31			

List of Figures

Fig. No.	Title			
1	Surface area (2D and 3D) of Himachal Pradesh	2		
2	Agro-climatic zones of Himachal Pradesh	2		
3	Per-capita income of people in Himachal Pradesh	3		
4	Plant diseases that constrain crop production on farmers' fields	12		
5	Insect pests that constrain crop production on farmers' fields	12		
6	Abiotic stresses that constrain crop production on farmers' fields	12		
7	Water storage in barrages and check dams	15		
8	Use of water harvesting and water storage structures for conservation and	15		
	utilization of available water for increasing prop productivity			
9	Use of drip irrigation/polythene mulching to improve water use efficiency and	16		
	increase crop productivity			
10	Increase in crop productivity and water use efficiency by using drip irrigation in vegetable	16		
	and fruit crops			
11	High value crops for system diversification to increase farm incomes	17		
12	Protected cultivation of vegetables	18		
13	Protected cultivation of lilium and carnation under mid-hill conditions in	19		
	Himachal Pradesh			
14	Vegetable production under hydroponic system and potato seed production under	19		
	aeroponic system to increase famers' income			
15	Production of quality seed to increase farmers' income and crop productivity	19		
16	Adoption of biotech derived products for value addition to develop new production systems	20		
17	High density planting of apple to increase fruit production	21		
18	Honeybee keeping for generating additional farm income and managed pollination for	22		
	increasing fruit set			
19	Institutional mechanism for up-scaling managed pollination by honeybees	22		
20	Coffee and tea plantations	23		
21	Sericulture for generating additional farm income	24		
22	Mushroom cultivation as a cooperative or small scale agro-industry	24		
23	Integrate crop production with agroforestry to increase availability of fodder, timber and	25		
	food crops to meet the household needs of the farmers			
24	Drying and processing of vegetables/ fruits for stabilization of prices, minimizing crop	26		
	loss, and value addition			
25	Value addition in apricots	27		
26	Utilization of tutti-frutti in different food products	28		
27	Use of Jeevamrit in zero budget natural farming	28		
28	Training and skill development of farmers	29		

Composition of SCC

Name	Designation	Phone No.	Email-ID
Dr HC Sharma, Chairman	VC, YSP UHF, Nauni	7807803661	vcuhf@yspuniversity.ac.in
Dr Ashok Sarial, Member	VC, CSK HPKV, Palampur	98963 13776	vc@hillagric.in
Dr VP Sharma, Member	Director, DMR, Solan	01792230541	directordmr@gmail.com
Dr SK Chakrabarti, Convenor	Director, CPRI, Shimla	94183 72972	director.cpri@icar.gov.in

Details of the Meetings of the SCC

- Formulation of strategy to double farmers' income in Himachal Pradesh, 17 March 2017. Central Potato Research Institute, Shimla, HP.
- Formulation of strategy to double farmers' income in Himachal Pradesh, 14th April 2017. YSP University of Horticulture and Forestry, Nauni, Solan, HP.
- Formulation of strategy to double farmers' income in Himachal Pradesh, 16 Dec 2017. Central Potato Research Institute, Shimla, HP.

Participants: Scientists from YSP-UHF, CSK HPKVV, CPRI, DMR, Departments of Agriculture, Horticulture, Animal Husbandry and Fisheries, Environment and Forests, Govt of Himachal Pradesh.

List of Participants

Name	Designation	Phone No.	Email-ID
Dr HC Sharma	VC, YSPUHF, Nauni	01792252363	vcuhf@yspuniversity.ac.in
Dr Ashok Sarial	VC, CSK HPKV, Palampur	98963 13776	vc@hillagric.in
Dr VP Sharma	Director, DMR, Solan	01792230541	directordmr@gmail.com
Dr SK Chakrabarti	Director, CPRI, Shimla	01772 625073	director.cpri@icar.gov.in
Dr Snohed Janartha	Asstt. Director, Fisheries, Solan	94181 18999	fisheries_hp@nic.in
Dr BS Guleria	Dy. Director, Horticulture, Shimla	94184 99060	horticul-hp@nic.in
Dr NK Pandey	Head, Division of Social Sciences,	9418276362	nkpcpri@gmail.com
	HPKV, Palampur		
Dr AK Randev	Professor & Head, Department of	94184 58558	randev26@rediffmail.com
	Social Sciences, YSP UHF, Nauni		
Dr Ravinder Sharma	Professor (Agri. Economic),	9418148202	rsharmassc@yspuniversity.ac.in
	YSP UHF, Nauni		
Dr RC Bhardwaj	Dy. Director, Agriculture, Shimla	9816691827	rattanchand1961@gmail.com
Sh Ramesh Chand	Director, Agriculture, Shimla	98161 32705	krishibhawan-hp@gov.in
Dr Sunil Chauhan	Asstt. Director, Animal Husbandry,	94594 50190	sunchauhan18@gmail.com
	Shimla		
Dr OPAhlawat	Principal Scientist, DMR, Solan	9418022025	ahlawat22op@gmail.com
Dr VK Dua	Head, Division of Crop Production, CPRI, Shimla	94180 09887	vkdua65@yahoo.co.in
Dr Sanjeev Sharma	Head, Division of Plant Protection, CPRI, Shimla	94186 57678	sanjeevsharma.cpri@gmail.com
Dr Tanuja Buckseth	Scientist, Division of Seed Technology, CPRI, Shimla	89883 11171	tanujagbpuat@gmail.com

Dr Ashok Kumar	OSD to VC CSK HPKV Palampur	9816800972	osdyc@hillagric ac in
Dr Vinov Bhardwai	Head Division of Cron Improvement	9418046415	vinavenri@gmail.com
Di villay Dilardwaj	CPRI Shimla	7100 10115	vinayepri@gman.com
DrVinedVumer	Hood CDDS Kufri (Shimlo)	04195 20721	vinadkanaaranri@amail.aam
	Head, CPRS, Kulli (Sillina)	94183 89781	
Dr Som Dutt	Sr. Scientist, Division of	98160 09994	sd_bio@yahoo.com
	Crop Phy. & PHT, CPRI, Shimla		
Dr Dhiraj Kumar	Scientist, CPRI, Shimla	9816738307	dhirajextension@gmail.com
Dr Meenakshi	Officer In-charge, AERC, Shimla	01772830457	meenakshi.aerc.hpu@gmail.com
Mr Pardeep Kumar	Asstt Director, Animal	01792223593	drpk16sharma@gmail.com
Sharma	Husbandry, Solan		
Dr Rajeev Raina	Programme Coordinator, KVK	01899232144	kvkchamba@rediffmail.com
	Chamba		
Dr N S Kaith	Principal Scientist & Head,	94598 02063	narenderkaith63@gmail.com
	KVK, Rohru (Shimla)		
Dr Shashi Kumar Sharma	Associate Director (R&E) and Head,	9418075449	kvkkinnaur1995@gmail.com
	RHRTS and KVK, Sharbo, Kinnaur		
Dr DD Sharma	Programme Coordinator, RHRTS and	9418488190	sharmadd61@rediffmail.com
	KVK, Kandaghat, Solan		
Dr Vishal Dogra	Programme Coordinator,	94181 12698	kvkkangra@gmail.com
	KVK, Kangra		
Dr Sanjeev Upadhyaya	Programme Coordinator,	9418112684	kvkhmr@gmail.com
	KVK, Bara, Hamirpur		
Dr BK Sharma	Programme Coordinator,	9418124904	pckvkuna@gmail.com
	KVK, Una		
Dr VK Rathi	Programme Coordinator,	94184 58679	kvksirmour@gmail.com
	KVK, Sirmour, Dhaulakuan		
Dr JD Sharma	Programme Coordinator,	94180 54450	kvkbilaspurhp@gmail.com
	KVK, Berthin, Bilaspur		
Dr KC Sharma	Programme Coordinator,	94181 18557	kvkkullu@gmail.com
	KVK, Bajauara, Kullu		
Dr SK Thakur	Programme Coordinator,	9418193270	pckvkls@gmail.com
	KVK, Kukumseri, Lahaul & Spiti		
Dr Pankaj Sood	Programme Coordinator,	09418222532	pankajplp@rediffmail.com
	KVK, Mandi		
	,		

Strategies for Doubling Farmers' Income in Himachal Pradesh

Introduction

To ensure food and nutritional security for the growing population and to increase farmers' income, there is an urgent need to enhance resource use efficiency, reduce input costs and improve crop yields. According to the International Food Policy Research Institute, the world needs to double food production per unit area/day. This calls for an urgent need to identify potential alternative farming strategies to achieve long-term sustainable food production and food security. The Finance Minister in his Budget 2016 Speech mentioned about doubling farm incomes. Later, the Prime Minister of India gave a call to the nation for doubling farm incomes by 2022 by spelling out a six point strategy. To double the income of farmers by 2022, which does not take into account the rate of inflation, would require 15% growth rate, that would only be a marginal increase over the increase achieved from 2003 to 2013. To increase the farmers' income in real terms would entail restructuring the agricultural processes and policy interventions. Re-orienting conventional agriculture to more productive alternative farming systems has now been viewed as the need of the hour, as has been enunciated by Dr. MS Swaminathan, "If agriculture goes wrong nothing else goes right" and "Younger people will only join agriculture if it is technologically driven". This will require new approaches and innovations, as well as increasing collaboration between various stakeholders in the food system.

General Profile of Himachal Pradesh

Himachal Pradesh is located in the foot hills of the Western Himalayas and lies between 30°22' 40" to 33°12' 20" N latitude and 75°45' 55" to 79°04' 20" E longitude. It shares boundaries with Jammu & Kashmir in North, Punjab in the West, Haryana in the South and Uttarakhand and Uttar Pradesh in South-East. Its altitude ranges from 350 meters to 6,975 meters amsl, and is endowed with a myriad of climatic niches. The state is having an area of 556.7 m ha, the 3D surface area being 863.8 m ha (Fig. 1). However, due to hilly terrain, the area amenable for cultivation is only 10% of the total geographical area. The population of Himachal Pradesh is approximately 6 million and nearly 62% of the population is engaged in agriculture, which accounts for 15% of the Gross State Domestic Product (GSDP) (Table 1). More than 86% of

the farmers are marginal and small landholders with < 2.0ha. The state is divided into 12 districts, with four major land agro-climatic regions (Fig. 2, Table 2). Maize and rice are the major cereals grown in the rainy season, while wheat and barley are grown in the winter season. Blackgram, green gram, Phaseolus beans (Rajmah) and cowpeas are the main pulses in the rainy season, while chickpea and pea are grown in the winter season. The pulse crops are often inter-cropped in maize and wheat, although the traditional inter-cropping system is disappearing fast. In recent times, agriculture in Himachal Pradesh has diversified into temperate and subtropical fruits, off-season protected cultivation of vegetables and flowers, and aromatic and medicinal plants. In addition, turmeric, Calocasia (Arbi), garlic, and spices are being cultivated as cash crops in some pockets (Table 3). An area of 772 thousand hectares is under food grain production, with a total production of 1,537 thousand MT. Vegetable production has increased from 991 thousand MT in 2006-07 to 1466 MT in 2013-14, while apple production rose from 103 thousand MT in 1970-71 to 866 thousand MT in 2014-15. About 800 hectares area is under floriculture, which is only 0.4% of the total area under floriculture in India. The average monthly income per agricultural household in Himachal Pradesh during 2012-13 was higher (Rs 8,777) than the national average (Rs 6,426) (Table 4). The per capita income of people in Himachal Pradesh has increased from Rs 651 in 1970/71 to Rs 1,30,067 in 2016/17 as compared to the all India average of Rs 823 and 93,231 respectively (Fig. 3).

Total Geographical Area	55.67 lakh ha
Total Cropped Area	9.56 lakh ha
Net Area Sown	5.49 lakh ha (10%)
Cultivable Waste Lands	1.22 lakh ha
Operational Holdings	9.14 lakhs
Number of Farmers	8.63 lakhs
Average Holding Size	1.1 ha
Net Irrigated Area	18.76% (1,04,027 ha)
Small & Marginal Farmers	85%
Annual Avg. Rainfall	1,150 mm
Per capita income	Rs.1,35,621in 2015-16

Table 1: General Profile of Himachal Pradesh.

Table 2: Description of Different Agro-climatic Zones of Himachal Pradesh

Particulars	Sub-montane sub tropical low hills zone (Zone-I)	Mid-hills sub humid zone (Zone-II)	High hills temperate wet zone (Zone-III)	High hills temperate dry zone (Zone-IV)
Areas	Una, Bilaspur,	Palampur and Kangra	Shimla (except Rampur)	Kinnaur, Lahaul &
	Hamirpur, and parts	tehsils; Rampur in	parts of Kullu, Solan,	Spiti and parts
	of Sirmaur, Kangra	Shimla, and parts of	Chamba, Mandi, Kangra	of Chamba
	Solan and Chamba	Mandi, Solan, Kullu,	and Sirmaur	
		Chamba and Sirmaur		
Geographical	913.2 (16.4%)	1,183.2 (21.3%)	1,280.9 (23.0%)	2,190.0(39.0%)
area (000 ha)				
Total cropped area	355.1 (38.0%)	383.4 (41.0%)	171.8 (18.4%)	24.0 (2.6%)
(000 ha)				
Elevation	Below 650 m amsl	650-1,800 m amsl	1,800-2,200 m amsl	2,200 m amsl
Soil pH	Neutral, coarse texture	Acidic, coarse texture	Acidic, shallow in depth	Neutral, coarse texture
Rainfall	1,000 mm	1,500-3,000 mm	1,000 mm	250 mm
Irrigated area	16.6%	17.5%	7.8%	40.6%

Table 3: Major Crops Grown in Different Agro-Climatic Zones of Himachal Pradesh

Zones	Crops				
	Field crops	Fruits	Medicinal Plants	Flowers	Spices
Ι	Wheat, Maize,	Mango, Litchi, Citrus,	Safed Musli,	Gladiolus,	Ginger,
	Paddy, Gram,	Aonla, Pomegranate,	Aloe and Rose	Lillium, Marigold,	Turmeric
	Sugarcane, Mustard,	Low chilling varieties		Chrysanthemum and	and Garlic
	Potato and Vegetables	of Peach, Plum,		Rose	
		Pear, Apple and Strawberry			
Π	Wheat, Maize,	Stone fruits (Peach,	Dil, Thyme,	Carnation, Gladiolus,	Ginger,
	Barley, Black	Plum, Apricot and Almond),	Tulsi, Aloe,	Lillium, Marigold,	Garlic and
	Gram, Beans,	Pear, Pomegranate,	Rose and Stevia	Chrysanthemum and	Turmeric
	Paddy and vegetables	Pecan nut, Walnut,		Alstroemeria	
		Kiwi Fruit and Strawberry			

III	Wheat, Barley,	Apple, Pear (soft), Cherry,	Lavender, Rose,	Gladiolus, Lillium,	Ginger
	Small millets, Pseudo	Almond, Walnut, Chestnut,	Taxus baccata and	Chrysanthemum	and Garlic
	cereals (Buck wheat	Hazel-nut and Strawberry	Kuth	and Marigold	
	and Amaranthus),				
	Maize and Potato				
IV	Wheat, Barley, Psedo	Apple, Hops, Grape, Prunes	Hops	-	Kuth and
	cereals (Buck wheat	Drying type of Apricot,			Kala Jeera
	and Amaranthus), Peas	Almond, Chilgoza, Walnut,			
	and Potato	Pistachio nut and			
		Seabuckthorn			

Table 4: Average Monthly Income per Agricultural Household During 2012-13 (₹)

State	Income	Net receipt	Net receipt	Net receipt	Total income
	from wages	from cultivation	from farming	from non-farm	
			of animals	business	
Himachal Pradesh	4,030	2,876	1,047	824	8,777
Jammu & Kashmir	7,336	3,063	801	1,483	12,683
Uttarakhand	1,069	2,531	848	253	4,701
All-India	2,071	3,081	763	512	6,426

All India Per Capita Income (In Rs.) at Current Prices

Fig. 3: Per-Capita Income of People in Himachal Pradesh

Infrastructure and Programmes

Various programmes of the Department of Agriculture are given below:

Quality Seed Multiplication and Distribution

Department owns 36 Seed Farms where foundation seeds of *Kharif* and *Rabi* crops are produced. Annually, about 3,500 to 4,000 quintals seed of cereals, pulses and vegetables are produced in these farms. At present, 5 grading centres are in operation for various crops. Under this scheme, considerable expenditure is incurred on seed multiplication farms, seed testing and certification, subsidy on cost of seeds and demonstrations.

Manure and Fertilizers

Distribution of Fertilizers: The State Govt. has allowed cost subsidy on complex fertilizers NPK 12:32:16, (NPK 10:26:26 and NPK 15:15:15) @ Rs.1000/-per MT. Apart from this, cost subsidy @25% is also being provided on 100% water soluble complex fertilizers to the farmers (limited to Rs 2500 per farmer). In order to ensure adequate supply of fertilizers, the government has entrusted this responsibility to HIMFED/Cooperative Societies. The farmers are educated about balanced use of fertilizers based on soil testing.

Soil Testing Centres: The department is providing free soil testing facilities to the farmers. Department has 11 Soil Testing Laboratories besides four mobile soil testing labs to provide free soil testing facilities to the farmers. About 1,25,000 samples are analysed annually. Besides this, Soil Health Cards are also being provided to the farmers.

Plant Protection

The Department supplies 150 MT of pesticides through 991 sale centres to the farmers. Pesticide Testing Laboratory at Shimla has been set up with a capacity of 150 to 250 samples per year. One Bio Control Laboratory has been set up at Palampur where conservation, pest augmentation, rearing and multiplication of bio-agents and training to extension staff and farmers are provided on regular basis. Another Bio Control Laboratory has been set up at Mandi. This is a continued scheme and the provision is made for meeting the expenditure on transportation and subsidy provided is on the cost of plant protection material. The plant protection material including equipments are supplied to the SCs / STs /IRDP families at 50% cost.

Commercial Crops

Under crop diversification, major emphasis is being laid on production of off-season vegetables, quality vegetable seeds, potato and ginger, besides soybean, oilseeds and pulses.

Development of Seed Potato: The Department owns 13 Potato Development Stations where foundation seed of potato is produced.

Development of Vegetable Farms: Himachal Pradesh has gained reputation for cultivation of off-season vegetables and production of quality vegetable seeds. The ongoing programme on cultivation of off-season vegetables and production of vegetable seeds is proposed to be strengthened and organized on an extensive scale for providing higher income and employment.

Ginger Development: For production of disease free ginger, the Department is providing training, demonstrations and quality seed. About 35,000 tonnes of green ginger is produced annually, which is marketed within Himachal and neighbouring states.

Quality Control

Under this scheme, implementation of various acts on seeds, fertilizers and pesticides is ensured. Quality control functionaries have been notified. The Department has three fertilizer testing labs (Hamirpur, Sundernagar and Shimla), one State Pesticides Testing Lab at Shimla, Biofertilizer and Biopesticide lab at Palampur, and three seed testing labs (Solan, Palampur and Mandi), where 2,000 fertilizer samples, 300 pesticide and 1,200 seed samples are being analysed annually.

Agricultural Marketing

This is controlled through HP Agricultural and Horticultural Produce Marketing (Development and Regulation) Act, 2005. Under this Act, HP State Agricultural Marketing Board has been set-up. At present, 10 market committees are functioning and 53 markets have been made functional. Market information is being disseminated through AIR, Doordarshan, print media and internet to the farmers. The work on development of marketing infrastructure is carried out under APMCs. Information on daily market rates is also being disseminated through AIR and DD. Market rates of 39 commodities are also disseminated through *agmarknet.nic.in*. The APMC act has been repeated as per the model act, and provision has been made for private markets, single point market fee, contract farming, etc.

H.P. Crop Diversification Project (JICA ODA Loan Project)

Himachal Pradesh Crop Diversification Project is being supported by JICA through ODA loan. The objectives of the project are:

- Increase the area and production of vegetables through crop diversification.
- To raise income of small and marginal farmers.
- To create infrastructures for irrigation, farm access roads, marketing, post harvest, etc.
- To promote organic farming in a big way.
- To organize farmers into groups to takeover operation and maintenance of irrigation systems.
- Training and capacity building of Department of Agriculture field extension staff.
- The project is being implemented through Himachal Pradesh Agriculture Development Society. It has Governing Council, Executive and Finance Committee. For overall management of the project, State Project Management Unit (PMU) has been set up at Hamirpur, and three District PMU's at Palampur, Mandi and Hamirpur.
- Block PMU's at Dehra, Nurpur, Baijnath, Hamirpur, Una, Bilaspur, Mandi and Sarkaghat have also been set up for crop diversification.

Project under Rural Infrastructure Development Fund (R.I.D.F)

Special Project on Diversification of Agriculture through Micro-Irrigation and Other Related Infrastructure in HP

The project on diversification of agriculture through micro-irrigation and other related infrastructure in HP aims at increasing the area under efficient methods of irrigation viz., drip and sprinkler irrigation. NABARD has sanctioned this project under RIDF- XIV, amounting to Rs.198.09 crores starting from 2009-10. The project components include sprinkler system, drip system, farm tanks, shallow wells, shallow tube wells, deep tube wells, small and medium lifts and pumping machinery. For sprinkler and drip systems, the farmers shall be provided 80% subsidy, and 20% would be beneficiary's contribution. Besides this, the farmers shall also be provided 50% assistance for creation of farm tanks, shallow wells, shallow tube wells, deep tube wells, small and medium lifts and pumping machinery.

Dr YS Parmar Kisan Swarozgar Yojna

Project components of 'Dr YS Parmar Kisan Swarozgar Yojna' (Poly House and Micro Irrigation) include creation of need based infrastructure such as location specific models of polyhouses with micro-irrigation facility, and are expected to fulfil the objectives of high productivity, quality, safeguard against adverse weather, efficient input use, etc. For this, 85% project assistance shall be provided to the farmers. For creation of water sources individually and collectively by a group of farmers (low/medium lift, pumping machinery), 50% subsidy shall be provided. The project envisages construction of 4,700 polyhouses and 2,150 microirrigation systems of different designs suitable to different agro-ecological situations in the state. Beside this, 60 small lift, 60 medium lift and 750 pumping units shall also be established under this project.

Rajiv Gandhi Micro-irrigation Scheme

State Government is committed to promote Agriculture in the state by increasing the productivity of crops. For efficient system of irrigation, the government has launched crucial project named 'Rajiv Gandhi Micro-Irrigation Scheme' with an outlay of Rs 154 crores over a period of 4 years. Through this project, 8,500 hectare area will be brought under drip/ sprinkler irrigation system benefitting 14,000 farmers. Farmers will get a subsidy of Rs 113 crores during the project period. The project is under appraisal with NABARD under RIDF funding.

- 80% assistance shall be provided to individual farmers for micro- irrigation systems.
- 50% assistance for construction of shallow wells and shallow bore wells.

Mukhya Mantri Kisaan Evam Khetihar Mazdoor Jeevan Suraksha Yojna

This scheme provides compensation to the farmers and agricultural labourers in the event of sustaining injury or death during the operation of farm machinery. Farm machinery for this purpose includes tractors registered for agricultural purpose, power tillers, weeders, power plough, reaper cum binder, power thrasher, chaffcutters, implements, tools, equipment installation and operation of tube well/bore well/pumping sets and low lifts. The scheme is limited to the domicile farmers and farm labourers, but not to a worker/employee of any company/contractor.

Establishment of Centers of Excellence for Vegetable Nursery Production

The State Government has started new scheme named 'Establishment of Centres of Excellence for Vegetable

Nursery Production' by farmers to raise the vegetables seedlings, flowers and the other valuable plants under controlled environment to provide better planting material to the farmers, and to provide gainful employment to the farming youth.

Uttam Chaara Utpadan Yojna

With a view to increase fodder production in the State, The State Government has launched a new scheme; 'Uttam Chaara Utpadan Yojana' for fodder development by bringing an area of 25,000 hectares under fodder production. Quality seed of fodder grasses, cuttings and seedlings of improved fodder varieties will be supplied on subsidised rates to the farmers. Chaff cutters are important input for farmers and subsidy on chaff cutters is available to the SC/ST and BPL farmers.

Lift Irrigation and Borewell Scheme

In most parts of the state, water has to be lifted for irrigation. As an incentive to the farmers, government has decided to grant 50% subsidy for construction of lift irrigation schemes and installation of bore-wells by individual or group of farmers for irrigation.

Organic Farming

The state has diverse agro-climate conditions and due to its favourable positioning in the Himalayan region. Himachal Pradesh has a great scope for promotion of organic farming. The use of chemical fertilizers and pesticides in the state is very low and 80% of the area is rainfed.

Soil and Water Conservation

Due to topographical factors, the soil is subject to splash, sheet and gully erosion resulting into soil degradation. The Department of Agriculture (HP) is executing two soil and water conservation schemes under the state scheme :

- Soil conservation works.
- Water conservation and development.

Agriculture Research and Education

Under this, grant in aid is given to agriculture university for teaching, research and extension. Emphasis is being laid on location specific research for adoption of the same by the farming community of the state.

Extension and Farmers Training

Main function of the Agriculture Department is to

disseminate the technology to the farmers. The department runs two training centres, one at Mashobra and the other at Sundernagar. Besides this, farmers training camps are organised at village, block and district level.

Agricultural Economics and Statistics

Under this programme, three centrally sponsored schemes are operated as indicated below:

- Timely Reporting Scheme (TRS) for estimation of area and production of crops.
- Improvement of Crop Statistics (ICS) for bringing quality in the land record data at grass root level.
- Estimation of Production of Commercial crops like Potato and Ginger.

Agricultural Engineering

Under this scheme, new farm implements/ machines are popularized among the farmers. Testing and demonstration of new machines is also done under this programme.

Centrally Sponsored Schemes

- National Mission on Agricultural Extension and Technology (NMAET): (90:10).
- Mass Media Support to Agriculture Extension (100% CSS).
- Kisan Call Centre.
- National Crop Insurance Schemes.
 > Rashtriya Krishi Bima Yojna (RKBY).
 - ➢Pilot Weather Based Crop Insurance Scheme (WBCIS).
- Biogas Development Programmes (100%).
- Rashtriya Krishi Vikas Yojna (RKVY) (90:10).
- National Food Security Mission (NFSM).
- Paramparagat Krishi Vikas Yojna (Organic Farming).
- National Mission On Sustainable Agriculture (NMSA 90:10).
- Pardhanmantri Krishi Sinchai Yojana.
- AGRISNET Project.
- National e-Governance Plan Agriculture [NeGP-A].

Department of Horticulture

The State Department of Horticulture has mandate for carrying out activities relating to production and postharvest management of fruit crops, commercial floriculture, apiculture, mushrooms, hops, herbs and medicinal and aromatic plants. The vegetable cultivation,

though an integral part of horticulture, is however, presently being managed under control of the State Agriculture Department. The schemes/ services of the department are as follows:

Horticulture Development Scheme: For supply of fruit plants and elite plant material from registered government and private nurseries, supply of horticulture inputs and establishment of new orchards (individually or as garden colony).

Plant Protection Services: For supply of pesticides, bioagents and plant protection equipments.

Horticulture Farm & Nurseries Services: To serve as model demonstration centres for modern horticulture technology and production of elite plant material at government registered nurseries.

Horticulture Training & Extension Service Services: For training of farmers through short term training camps and training courses, exposure visits of farmers within and outside the state, and organisation of seminars and workshops.

Development of Beekeeping Services: For supply of improved strains of bee colonies with hives and bee colonies for pollination on rental basis. **Development of Floriculture Services:** For supply of

elite planting material of flowers.

Development of Mushroom Services: For practical training in mushroom cultivation, registration of trained farmers as mushroom growers, production and supply of pasteurized mushroom compost from departmental units, availability of quality mushroom spawn and transportation of mushroom compost.

Fruit Processing Programme Services: For community canning service and processing of fruits and vegetables.

Marketing & Quality Programme Services: For survey of markets under market intelligence scheme, training in post-harvest management/ picking, grading and packing of fruits, and procurement of fair average quality fruit (Apple, Citrus and Mango) under market intervention scheme.

Infrastructure

Availability of good physical infrastructure is of utmost importance for the growth in agriculture. Easy access to agricultural inputs such as fertilizers, seeds, and nurseries for fruits and vegetables is essential for meeting the farmers requirements. The details of fertilizer sale points, nurseries and other horticultural and animal husbandry infrastructure facilities are given in Tables 5 to 11.

District Whole sale **Retail sale HIM-FED** Co-op HIM-FED HPMC **HPAgro** IFFCO Civil Private Total Grand Ind. total supply **Bilaspur** 6 107 7 _ _ 3 13 130 136 _ 5 3 84 Chamba 121 _ 1 207 212 _ _ 9 197 7 11 215 224 Hamirpur _ _ -_ 9 2 2 8 125 649 Kangra 503 _ _ 640 2 6 4 34 Kinnaur 23 _ 1 _ 36 _ Kullu 6 134 1 2 96 233 239 _ _ _ 2 Lahaul Spiti 3 43 _ 45 48 _ _ _ _ Mandi 11 360 9 1 132 502 513 _ _ _ 5 Shimla 27 2 1 78 310 219 5 _ 337 5 25 6 93 12 135 Solan 141 _ _ -3 Sirmaur 10 92 1 28 124 134 _ _ _ 6 2 2 2 43 269 275 Una 220 _ _ 7 2 100 2112 41 9 32 641 2814 2944 Total

Table 5: District Wise Number of Fertilizer Wholesale Points and Retail Sale Points in Himachal Pradesh

Source: www.himfed.com

Progeny-cum-demonstration Orchards/Nurseries

Progeny-cum-Demonstration Orchards/Nurseries have been established for different fruits to serve as growth centers for the development of horticulture in their impact zone of normally ten kms radius. The objectives of these units are:

- Stocking of fruit trees of outstanding quality.
- Multiplication of pedigree and true to type planting

material.

- To act as model and demonstration orchards.
- Conducting field adaptability trials for new fruit varieties and testing of other horticultural technologies.
- To act as extension and training units for local farmers.

District	No. of Units	Area (ha)	Fruit plants		
Shimla	13	87.18	Apple, stone fruits, pear, cherry, pomegranate		
Kinnaur	8	39.71	Apple, stone fruits, almond, apricot, grapes		
Solan	8	41.58	Stone fruits, kiwi fruit, hazelnut, persimmon, pear, mango, citrus		
Bilaspur	6	16.55	Mango, litchi, citrus, guava, peach, pear		
Mandi	11	48.98	Apple, stone fruits, mango, citrus fruits, Kiwi fruit, walnut, strawberry		
Sirmaur	16	116.40	Apple, stone fruits, Kiwi fruit, mango, citrus fruits		
Kangra	8	35.76	Mango, litchi, citrus fruits, low chilling varieties of stone fruits, guava, pecan nut, aonla, grapes		
Una	1	33.88	Mango, pear, citrus, papaya, pomegranate		
Hamirpur	4	10.75	Mango, citrus, pear		
Chamba	12	55.43	Apple, stone fruits, mango, citrus, walnut, pear, guava		
Kullu	5	36.39	Apple, stone fruits, cherry, pomegranate, persimmon, Kiwi fruit,		
			strawberry, clonal rootstocks of apple, cherry, pear, stone fruits		
Lahaul & Spiti	2	7.02	Apple, apricot, almond, hops		
Total	94	529.63			

Table 6: District wise Details of PCDOs

Source: www.hphorticulture.nic.in

Private Registered Nurseries

The propagation of plant material for fruits is regulated under the Himachal Pradesh Fruit Nurseries Registration Act 1973. So far, 614 nurseries have been registered under this Act, out of which 540 nurseries are in the private sector and the balance 74 in the public sector. About two million fruit plants are propagated in these nurseries per annum.

Table	7:	District	Wise	Details	of	Private	Registered	Nurseries
		D1001100		Detterio	•••		negiotei ea	

District	No. of	Area (ha)	Fruit plants
	nurseries		
Shimla	165	33.00	Apple, pear, cherry, apricot, peach, almond, Kiwi fruit, strawberry,
			walnut, pomegranate
Kinnaur	35	9.25	Apple, pear, apricot, almond, grapes, Kiwi fruit
Solan	11	4.00	Stone fruits, apple, Kiwi fruit, mango, citrus, guava, pear
Bilaspur	24	9.50	Mango, litchi, guava, aonla, pear, papaya, grapes

8

Mandi	115	28.00	Apple, stone fruits, mango, guava, litchi, walnut, pomegranate,		
			strawberry, olive, pecanut		
Sirmaur	39	20.50	Stone fruits, apple, mango, citrus, Kiwi fruit		
Kangra	26	30.60	Mango, citrus, litchi, pecan nut, grapes, stone fruits, aonla, guava,		
			loquat		
Una	5	6.25	Mango, pear, papaya, pomegranate, banana, peach, strawberry.		
Hamirpur	15	7.50	Mango, pear, citrus		
Chamba	68	22.30	Apple, stone fruits, mango, walnut, pear, guava, Kiwi fruit		
Kullu	126	32.50	Apple, pear, stone fruits, pomegranate, persimmon, olive, cherry,		
			Kiwi fruit		
Lahaul & Spiti	3	0.30	Apple, apricot, almond, hops		
Total	632	203.70			

Plant Tissue Culture Laboratories

For rapid propagation of horticulture and floriculture planting material, the State Department of Horticulture has promoted two plant tissue culture laboratories, one each in the public and private sectors.

Table 8: Details of Plant Tissue Culture Laboratories

Name and address of the laboratory	Plant propagation capacity
Agrigene International, Highway Home,	2,00,000 plants
Sanjauli, Shimla	
Department of Biotechnology, Dr. Y S Parmar University of	50,000 virus free plants per year
Horticulture and Forestry, Nauni	
Rajat Biotech Ltd, Padyalag, Bilaspur	5,00,000 plants per annum
	Source: www.hphorticulture.nic.ir

Olive Stations

For promoting the development of olives in the State, three Olive Stations have been established with the objective of collection of varieties and development of suitable package of practices for its cultivation.

Table 9: Detail of Olive Stations in Himachal Pradesh

Station	Area (ha)	No's of olive plants
Panarsa, Mandi.	4.80	1000
Lanji, Chamba,	8.09	1900
Jerva, Sirmaur	6.36	399

Source: www.hphorticulture.nic.in

Walnut Development Station

A walnut development station has been established at Nohra in district Sirmaur for collection of walnut varieties and to develop and adapt technology for walnut cultivation.

Table 10: Veterinary Institutions Under AnimalHusbandry Department

<u>J</u>

Category of Veterinary Institution	Number
State Veterinary Hospital	1
Zonal Veterinary Hospital	1
Veterinary Polyclinic	9
Sub-Division Veterinary Hospital	59
Veterinary Hospital	338
Central Veterinary Dispensary	30
Veterinary Dispensary	1,772
Veterinary Check Post	6
Pool Store	11
Semen Bank	7
Sperm Station	2
Wool Analysis Laboratory	3
Epid. Laboratory	1
Disease Investigation Laboratory	2
Cattle Farm	3
Sheep Farm	5
Sheep and Wool Extn. Centre	9
Rabbit Farm	2
Horse Breeding Farm	1
Poultry Farm	2
Poultry Extn. Centre	11
Quality Control Laboratory	1
Training Centre	2
Gosadan	1
Total	2,279
Mukhya Mantri Pashu Arogya	1,251
Pashudhan Yojna	
Grand total	3,530

Plant Protection Centres

A total of 337 plant protection centres have been established in different fruit growing regions of the State with the objectives of:

- Supply/sale centres for plant protection chemicals and equipments.
- Extension units for the dissemination of technical information to the local farmers.

itres	
Districts	No's of units
Shimla	78
Kinnaur	20
Solan	23
Bilaspur	16
Mandi	47
Sirmaur	13
Kangra	16
Una	13
Hamirpur	16
Chamba	47
Kullu	42
Lahaul and Spiti	6

Table 11: The District Wise Details Plant Protection Centres

Source: www.hphorticulture.nic.in.

337

Total

Major Constraints and Productivity Gaps

Several abiotic (drought, frost, hailstorms, floods, and insufficient chilling) and biotic (insect pests, diseases, nematodes, monkeys, stray/wild animals, and birds) are the major constraints to increase farm productivity. Because of the monkey menace and crop damage by the wild/ stray animals, many farmers have given up crop cultivation in many parts of Himachal Pradesh. However, availability of food grains in the public distribution system, and the tendency among the youth to look for white collar jobs are also one of the reasons for lack of interest in farming.

The major limitations to increase crop productivity, profitability and diversification are:

- Less than 20% of the total cultivable area is irrigated, • while the rest of the area is rainfed along the steep slopes of the mountains.
- Because of lack of irrigation, most of the farmers are not able to take up intensive protected cultivation of high value cash crops (vegetables, fruits and flowers).
- Except sheep and goats, which are largely owned by

the nomads, animal husbandry, poultry and fisheries have not been taken up commercially.

- Lack of transport and marketing facilities, and lack of storage, processing and value addition are the major bottlenecks in turning farming into an economically viable enterprise.
- Cultivation of temperate fruits has made a huge impact in the mid and high-hill regions of Himachal Pradesh. However, fruit cultivation has not been taken up on a commercial scale in the lower Shivalik Hills, which accounts for nearly 60% of the total area and population.

There is a huge gap between the potential and attainable yields of vegetables and fruits (Tables12 and 13). In case of tomato the farmers' yield is about 50% of the attainable yields, while in capsicum, the farmers' yields are just onefourth of the attainable yield. There is a huge scope for increasing crop yields and farm incomes. Besides this, harvest and post-harvest losses result in monetary losses of thousand of crores (Tables14 and 15).

Сгор	Yield (q/ha)		Yield Gap (q/ha)			
	Potential (A)	Attainable (B)	Farmers (C)	A-B	B-C	
Tomato	600	400	220	200	180	
Capsicum	250	200	57	50	143	
Peas	200	160	94	40	66	
Cauliflower	250	200	191	50	9	
Cabbage	435	250	227	185	23	

Table 12: Yield Gap Analysis in Vegetable Crops

Table 13: Yield Gap Analysis in Major Fruit Crops

Сгор		Yield (t/ha)	Yield Gap (t/ha)		
	Potential (A)	Attainable (B)	Farmers (C)	A-B	B-C
Apple	40	25	4.18	15	20.82
Pear	22	18	2.45	4	15.55
Plum	12	10	1.65	2	8.35
Apricot	8	6	3.15	2	2.85
Pomegranate	30	18	1.02	12	16.98
Mango	12	7	1.15	5	5.85

Fig. 4: Plant diseases constraining crop production on farmers' fields

Fig. 5: Insect pests constraining crop production on farmers' fields

Fig. 6.Abiotic stresses constraining crop production on farmers' fields

Crops	Production (mt)	Price (₹/t)	Loss (%)	Losses (₹ crores)
Apple	1.90	68,078	10.39	13,341
Citrus	11.47	14,011	9.69	1,557
Grapes	2.52	44,564	8.63	969
Cauliflower	7.79	16,321	9.56	1,214
Mushrooms	0.04	1,19,049	9.51	46
Tomato	17.85	16,510	12.44	3,666

Table 14: Estimate of Monetary Value of Harvest and Post-Harvest Losses in India (2012-13, at 2014 Prices)

Table 15: Extent of Post-Harvest Losses Across Commodity Groups

Crop/commodity	Monetary losses (production of 2012-13 and prices at 2014,₹ crore)				
Cereals	20,698	Paddy (50), Wheat (38), Others (12)			
Pulses	3,877	Chickpea (63), Pigeonpea (25), Others (12)			
Oilseeds	8,278	Soybean (65), Mustard (18), Others (16)			
Fruits	16,644	Mango (43), Banana (23), Citrus (9), Apple (8), Others (16)			
Vegetables	14,842	Potato (34), Tomato (25), Onion (16), Cauliflower (8), Others (18)			
Plantation crops	9,325	Sugarcane (60), Coconut (22), Others (18)			
Livestock Produce	18,987	Milk (23), Marine fish (23), Poultry meat (21), Inland fish (20), Others (13)			

Source: Jha et al. (2015)

Farmers' Share in Consumer Prices

The farmers' share in consumer prices remains very low, especially in case of horticultural commodities (Singh *et al.* 2016). Farmers' share in consumer price varied from 25.5% in apple, 39.9% in banana, 41.1% in onion, 41.7% in tomato, 43.2% in mango and 58.6% in potato in 2004 (Table 16). Producers stand to gain with improved marketing, and increased demand for their products.

Table 16: Marketing Margins and Farmers' Share for Major Fruits and Vegetables (in percentage)

Commodity		Ahmedabad		Chennai				
	Marketing	Marketing	Farmer's	Marketing	Marketing	Farmer's		
	cost	margin	share	cost	margin	share		
			vegetables					
Tomato	8.0	50.3	41.7	17.3	34.5	48.2		
Cabbage	11.1	43.2	45.8	42.9	16.7	40.4		
Cauliflower	5.5	37.0	68.5	49.3	9.0	41.8		
Brinjal	9.1	48.1	42.9	29.7	22.1	48.3		
	Fruits							
Mango	17.9	38.9	43.2	18.7	13.7	67.6		
Apple	5.0	69.4	25.5	37.5	21.8	40.8		
Pomegranate	11.7	48.5	39.8	23.2	33.8	43.0		

Source: Gandhi and Namboodiri (2004)

Potential for Development and Role of Technology in Doubling Farmers' Income

The farmers of Himachal Pradesh have been practicing mixed farming systems, and hence, information on contribution of each component of farming including cereals, grain legumes, vegetables, fruit crops, agroforestry, medicinal plants, fisheries, bee keeping, dairy, poultry, mushroom cultivation, and collection and sale of forest produce, along with non-farm sources of income form part of total farm income. However, the there is no comprehensive source of data on the contribution of each of these components to farmers income in Himachal Pradesh.

Farmers of Himachal Pradesh have been diversifying agriculture, and the sources of income to farmers are either through agriculture (farm income 20% in rain fed and 40% in irrigated systems) or non-farm income, which ranges from 60 to 80%. However, the there is no comprehensive source of data on the contribution of each of these components to farmers income in Himachal Pradesh.

The goal of doubling the income of the farmers by 2022 cannot be achieved by increasing crop production only, but has to be accompanied by improvement in infrastructure, policy support, marketing and value addition. Efficient and organized supply chain holds the key for providing incentives to farmers to intensify, expand and diversify agricultural production.

Himachal Pradesh is well endowed with congenial conditions for taking up cultivation of fruits, vegetables, flowers, mushrooms and agro-forestry on a commercial scale. In one of the studies conducted under the flagship scheme, *Rashtriya Krishi Vikas Yojna* (RKVY), it has been estimated that the farmers earned fairly high net returns through cultivation of vegetable crops, varying from Rs 2.73 lakhs in capsicum to Rs 43,861 per hectare in tomato. The net returns from green pea cultivation in dry temperate zone of Kinnaur and Lahaul and Spiti districts were Rs 2.49 lakhs and Rs 1.05 lakhs per hectare, respectively.

The farmers' cooperatives can play a catalytic role in boosting the agricultural growth in Himachal Pradesh. The **Mahakali Flowers and Vegetable Growers' Cooperative Marketing Society, Ltd (MFVGS)** was established at Jubbarhatti in district Shimla, in March, 2009. The society has a modern nursery growing polyhouse (5 lakh seedlings), cold storage for vegetables, and a godown for supply of critical inputs to the member farmers (fertilizers, chemicals, seeds, staking material, packing material, and other usable items for the polyhouse growers).

This system reduced the cost of marketing to one tenth due to large-scale handling and marketing, and the farmers' incomes in the area have increased by 40 to 50%. There are several such success stories that need to be documented and replicated in other areas to double farmers' income in Himachal Pradesh. To increase crop productivity and enhance farm incomes, it is important to increase the productivity of the existing cultivated area, increase cropping intensity, and adopt precision farming, polyhouse culture, diversification of farming systems, storage, processing and value addition.

There is a need for a mission mode approach to double the farm income by focusing on critical inputs for doubling the farmers' income. To achieve this objective, it is imperative that we overcome the major constraints to increasing crop production such as shortage of irrigation facilities and farm roads, improve input use efficiency, adopt integrated crop – livestock farming and develop facilities for marketing the farm produce. To realize a major boost in farmers' income, it is equally important that we invest in developing newer technologies and innovations, as well as increase the collaboration between different departments of the central and state governments, and promote public - private partnerships in agri-food system. The following interventions can be made to double the farmer's income in Himachal Pradesh over the next 5 years.

- Strengthening of water storage structures, and efficient management of rain water harvesting.
- Promoting timely and judicious use of fertilizers based on soil and water testing reports.
- Adoption of cluster approach for holistic development of vegetables, fruits, flowers, and spices.
- Timely availability of quality seeds/ seedlings of vegetables and fruits.
- Promotion of high density plantations in fruits.
- Efficient and timely use of integrated pest management practices.
- Enacting legislative measures for protection of crops from wild animals.

Technological Interventions Water Storage, Conservation and Use

Of the total 5.40 lakh hectares of farmland in the state, only 18-20% is irrigated, which is far below the national average of 49% in India. Since there is plenty of water in Himachal Pradesh, there is an urgent need to improve infrastructure to cover > 50% of the cultivable area under irrigation for increasing the production and productivity of different crops. This can be achieved by tapping the water from rivers and rivulets through water channels and

Water Storage in Barrages and Check-dams Across Rivers and Rivulets, and Storage Ponds and Tanks: Needed Urgently

- Need to increase area under irrigation from 20 50% over the next 5 years.
- Develop systems to store rain and snow water in barrages across rivers and rivulets, check dams, and tanks.
- Increased irrigation will be the key to attract youth the farming.
- Implement Participatory Water Conservation Projects, with 80% of the cost to be borne by the state/central Govts.
- Farmers and farmer associations should use irrigation water by lift irrigation or gravity flow, and be responsible for maintenance and distribution of water in the community.
- Urgent Need for a Movement for Water Conservation.

pipes along the hill slopes; construction of small and medium sized dams and barrages across rivers and rivulets, and check dams and tanks (polythene lined or concrete tanks to store 10,000 to 500,00 liters of water), and use the stored water by lift irrigation and/or gravity flow (Figs. 7 and 8).

Supplement availability of water can increased through storage of spring water in large tanks, rainwater harvesting, and recharge of the groundwater through check dams and percolation tanks.

Fig. 7: Water storage in barrages and check dams

Fig. 8: Use of water harvesting (left) and water storage (right) structures for conservation and utilization of available water for increasing crop productivity

Waste Land Development to Promote Water Conservation

- ➢ Afforestation with perennial grasses/trees in steep slope of more than 40% slope.
- Promotion of mulberry, wild fruit plants and fodder trees.
- Development of soil bunds to save excessive loss of water and nutrients.
- Construction of trenches, check dams and artificial structures to maximize water percolation in marginal and denudated areas.

Water use efficiency needs to be improved through drip and sprinkler irrigation, and moisture conservation through crop residue/polythene mulching, and follow inter cropping for sustainable crop production (Fig 9). Increase in yield and water savings due to drip irrigation and fertigation have been shown in Fig. 10 and Table17.

Fig. 9: Use of drip irrigation/polythene mulching to improve water use efficiency and increase crop productivity

Fig. 10: Increase in crop productivity and water use efficiency by using drip irrigation in vegetable and fruit crops

Сгор	Yield	Yield	Yield	Water
	under drip	under conventional	increase	saving (%)
	fertigation (t/ha)	method (t/ha)	(t/ha)	
Potato	44	29	15	30
Chilli	30	20	10	47
Pea	20	11	9	50
Brinjal	75	44	31	44
Cabbage	32	20	12	40

Table 17: Increase in Yield and Water Saving Due to Drip Irrigation in Vegetables

Source: PAU (2017)

Diversification

Diversification of agriculture through high value cash crops such as fruits (apple, plum, peach, pear, apricot, pecan nut, Kiwi fruit, pomegranate, mango, litchi, orange, cherry), vegetables (tomato, peas, capsicum, beans, cole crops, cucurbits), flowers (rose, carnation, chrysanthemum, Gerbera, marigold, gladiolus), agroforestry (*Grevia*, mulberry, poplar, willow), timberwood, mushrooms, beekeeping and medicinal plants (*Valeria najatamansi, Viola odorata, Picorrhiza kurroa*, Amla, and grafted Harar) (Fig. 11).

Fig. 11: High value crops for system diversification to increase farm incomes

Protected Cultivation

Protected cultivation of vegetables and flowers, hydroponics, and multi-story cropping systems can increase farmers' incomes (Fig. 12, 13 and 14, Tables18, 19 and 20). Protected cultivation under protective structures shields the crops from insect pests and weather extremes for assured, climate-resilient and increased production of quality produce.

Fig. 12: Protected cultivation of vegetables

Table 18: Returns from Protected Cultivation of Tomato, Capsicum and Cucumber at Solan, Himachal Pradesh

Particulars	Protected conditions			Open conditions		
	Tomato	Capsicum	Cucumber	Tomato	Capsicum	Cucumber
Productivity (t/ha)	110.0	75.0	110.0	50.0	30.0	50.0
Input cost (lakhs)	6.3	4.8	3.1	4.0	2.1	3.0
Rate (₹/kg)	20.0	30.0	15.0	20.0	20.0	15.0
Return (lakhs)	22.0	22.5	16.5	10.0	6.0	7.5
Net Profit (lakhs)	15.70	17.65	13.45	6.00	3.95	4.50

Table 19: Increase in Income Through Protective Cultivation of Vegetables By Using Low Tunnel Technology

Crop	Yield (q/ha)	Gross income (₹/ha)	Expenditure (₹/ha)	Net income (₹/ha)
With low tunnel technology				
Chilli	312.5	6,25,000	3,46,250	2,78,750
Capsicum	304	7,81,250	3,27,500	4,53,750
	Without low tunnel technology			
Chilli	200	4,00,000	3,05,000	95,000
Capsicum	187.5	4,67,500	2,97,500	1,70,000

Source: PAU (2017)

Table 20: Increasing Farmers' Income through Protected Cultivation of Flowers

Intervention	Technology	Production cost (₹/500 m ²)	Gross income (₹)	B: C Ratio
Chrysanthemum Carnation	Year round cultivation	2,51,44149,747.32	9,48,5592,06,801	1: 3.771: 4.16

Fig. 13: Protected cultivation of lilium and carnation under mid-hill conditions in Himachal Pradesh

Fig. 14: Vegetable production under hydroponic system (left), and potato seed production under aeroponic system (right) to increase farmers income

Timely Availability of Quality Seed

Improved and timely availability of quality seed of cereals, legumes, vegetables, flowers, and saplings of fruit plants (for example, hybrid seeds of okra, tomato, radish, carrot, cauliflower, bell pepper chilies, cabbage and beetroot), and appropriate varieties suited for protective cultivation to the farmers are important for increasing productivity and net returns.

Seed production of onion cv nasik red

Seed processing and packaging

Fig. 15: Production of quality seed to increase farmers income and crop productivity

Fastrack plums. Trees are approximately 1 year old and flower and fruit continuously in the green house

'Stoneless' plum (left) normal stone cultivar 'cacanska lepotica' (right)

Fig. 16: Adoption of biotech derived products for value addition to develop new production systems

Varietal Shift and Use of Improved Management Practices

- Potato- Varietal shift to Kufri Himalini and cultural management practices (potato - French bean system), and effective white grub management can increase the yields by 17%.
- Maize- high yielding hybrids and mixed cropping with pulses.
- > Wheat- Mixed cropping with mustard, chickpea or peas.
- Mango- Regular bearing and frost tolerant varieties in lower Shivalik Hills, and cultural management practices to regulate plant growth and fruit bearing for high productivity.
- Citrus- Varietal shift and management practices, use of selective insecticides, and use of grass/ polythene

mulching for moisture conservation.

- Litchi-Ensured irrigation to avoid fruit cracking.
- Cherry- Management practices + use of drip irrigation.
- Peach, Plum, Apricot and Kiwi- Varietal shift and management practices with emphasis on training, pruning, and drip irrigation.
- Apple and Pear- Shift to clonal rootstock based high density plantations of self-fruiting varieties, supplemented with drip irrigation, proper training and pruning, managed pollination through pollinators and pollinizers. High density planting will result in more than 40% increase in farmers' income under different fruit crops (Tables 10, 11 and 12). Managed pollination has a great potential to enhance farmers' income (Figs. 15,16 and Table 13).

Increasing Production and Productivity of Fruit Crops Use of Dwarf Rootstocks and Inter-Stocks

<u> J</u>E

Fruit	Rootstock (s)	Salient features
Apple	EMLA111/MM111	Suited to drought prone areas
Pear	BA-29	Standard rootstock, semi-vigorus
Peach	GF 667 and GF-677	Drought tolerance
Plum	PIXY X ST, Julian-K	Dwarfing rootstocks
Cherry	COLT	Semi-dwarf

Fig. 17: High density planting of apple to increase fruit production

Table 21: Returns from High Density Planting in Apple

Parameter	Low density	High density
Planting density	250 trees	2,500 trees
Productivity	10 t /ha	55 t/ha
Input costs	₹3 lakhs	₹12 lakhs
Returns	₹12 lakhs	₹28 lakhs
Net profit	₹9 lakhs	₹16 lakhs

Table 22: Returns from High Density Planting of Kinnow (20x10 Feet)

Activity	Normal spacing (20x20 feet)	High density planting (20x10 feet)
No of plants in per ha	275	550
Cost of cultivation (₹/ha)	1,71,325	2,23,325
Yield (q/ha)	255	355
Average price (₹)	3,82,500	5,32,500
Net profit (₹/ ha)	2,11,175	3,09,175

Table 23: Returns from Improved Cultivation of Kiwi Fruit (Zones II & III)

Age(yrs)	Input/ expenditure	Gross income (₹lakhs)		Net income (₹lakhs)	
	(₹lakhs)	, , ,			
		Traditional	Improved	Traditional	Improved
1	14.00	00.00	00.00	-14.00	-14.00
2	03.50	00.00	00.00	-03.50	-03.50
3	03.50	03.75(25 q)	07.50 (50 q)	+00.25	+04.00 (16 fold)
4	03.50	05.25 (35 q)	11.25 (75 q)	+01.75	+07.75 (4.43 fold)
5	03.50	07.50(50 q)	15.00 (100 q)	+04.00	+11.50 (2.88 fold)
6	03.50	11.25(75 q)	22.50 (150 q)	+07.75	+19.00 (2.45 fold)
7	03.50	18.0 (120 q)	40.63 (250 q)	+14.50	+37.13 (2.56 fold)
			Traditional cultivation	Improved cultiva	tion
G	ross income		₹18,00,000	₹40,62,500	
N	etincome		₹14,50,000	₹37,12,500	

Interventions for improved cultivation of Kiwi

- Summer and winter pruning.
- Application of Cytokinins to improve fruit size and quality.
- Pollination and fruit thinning (6-8 fruits).
- Water management and harvesting at right stage of maturity.

Honeybee Keeping and Managed Pollination

Placement of 5 to 6 Bee Hives colonies per ha increases fruit production by 25%

Fig. 18: Honeybee keeping for generating additional farm income and managed pollination for increasing fruit set

Technology	Input	Returns		
	A. Integrated beekeeping			
Managed pollination	₹1 lakh/30 ha/100 colonies	₹45 lakhs increase in fruit		
		production in apple.		
Honey production	₹ 2.15 lakhs/100 colonies	3.15 lakhs		
Division, pollen, propolis,				
bee wax, queen production	₹ 4 lakhs/100 colonies	₹6.5 lakhs		
	B. Long term interventions			
Plantation of bee flora	Plantation program	Increases in carrying capacity		
Selective breeding of	As a coordinated network project	Productive honeybee strains		
Apis mellifera				

Table 24: Increasing Farmers' Income Through Integrated Honeybee Keeping

Tea/Coffee: The Crops for Diversification of Cropping System

Tea in Himachal Pradesh is mainly cultivated in Kangra district and cultivates both black tea and green tea, but black tea constitutes around 90% of the production. There are 5,900 tea gardens between Dharamsala to Jogindernagar, with an annual output of 8.99 lakh kg.

Kangra tea is known for its unique color and flavour, attributed to unique climatic conditions in the region. It has been granted Geographical Indicator tag in 2005. Tea cultivation can be expanded in areas with >1,000 mm rainfall, with deep alluvial soils up to 1,000 m amsl in parts of Kangra, Mandi, Hamirpur, Sirmaur, and Bilaspur. Coffee is one of the most potential and ruminative crops

for the Lower Shivalik Hills of Himachal Pradesh. It can be cultivated in areas with high rainfall and deep alluvial soils up to 1,000 m amsl in Bilaspur, Mandi, Kangra, Hamirpur, and Sirmaur districts. Chandragiri and Selection 9 are suitable for cultivation in the temperate regions of the state, and has better flavor due to cold climatic conditions during fruit set and ripening.

Farmers can earn an income of Rs 30,000 to Rs 35,000 per *bigha*. It can be grown along with mango, avocado, papaya, and other fruit crops needed as shade for coffee cultivation. Dwarf and semi-dwarf varieties can be developed for high density plantings for high productivity.

Fig. 20: Coffee and tea have tremendous scope in Himachal

Sericulture

India is importing huge quantities of silk from China, South Korea, and Japan. To meet the domestic requirements, silkworm rearing can be adopted on a large scale in the lower Shivalik hills, where mulberry is growing aplenty under natural conditions. There are already a large number of silkworm rearing units and spinning mills set up in this area. This can be promoted as a self-employment scheme for the young entrepreneurs. To give a technological boost to silk production in Himachal Pradesh, we are strengthening silkworm research at the YSP-UHF Campus, Neri, collect and multiply the mulberry varieties suitable for silkworm rearing, distribute the material to the farmers, and develop marketing linkages with the silk industry.

Fig. 21. Sericulture for generating additional farm income

Mushroom Cultivation

<u> J</u>E

Integration of mushroom cultivation with farming systems (crop-livestock system) under low and mid-hill regions is important for increasing farm incomes (Fig. 21 and Table 25).

Input cost/100 bags = Rs 7,000. Return = Rs 15,000 in 3 months

Fig. 22: Mushroom cultivation as a cooperative or small scale Agro-Industry.

Table 25: Increasing Farmers Income Through Mushroom Cultivation

Area under mushroom cultivation	2 Kanals (1011.71 sq. meter)	1 Kanal (semi- automatic)+1 Kanal
		Amount(₹)
Initial cost	AC Unit + Temporary Sheds	₹17,00,000
Grossincome	From whole sale	₹7,30,000/-
	Total	₹7,30,000/-
Cost of production (3000 bags)	Initial raw material (Bag + Spawn + Casing)	₹3,25,000/-
	Electricity + Packing + Labour charges	₹1,10,000/-
	Total	₹ 4,35,000/-
Netincome		₹2,95,000/-
Net income from paddy-wheat		₹46,875/-

Source: PAU (2017)

Medicinal and Aromatic Plants

Medicinal and aromatic plants can be exploited to boost farmers' income in Himachal Pradesh.

Cultivation of *Tagetes minuta* (Wild Marigold) for essential oil production

Yield	35 liters of essential oil/ha	
Current market rate	₹9,000/litre	
Input cost	₹45,000/ha.	
Total returns ₹ 3,15,000/ha.(total return		
	traditional crops like maize < ₹	
	1,50,000/ha)	
Essential	Essential oil extraction unit	
requirement	(Rs 1,50,000/ for one ha	
	crop, life of unit: 10-12	
	years).	

Gloriosa superba (Kalihari) seed production

Technology intervention	Pollination management
Yield	400 kg seeds/ha/year
Current market rate	₹1,200/kg
Input cost	₹2,00,000/ha/year 1 st year
	5,00,000 (planting material) +
	₹ 1,00,000/ year maintenance
	cost
Total returns	₹4,80,000/ha/yr

Agroforestry and Pasture Development

Promotion of improved pasture and grassland management, agro-forestry, and cultivation of sweet stalk sorghum, maize and pearl millet to increase milk production through cooperative societies is an important component of animal husbandry (Fig. 23 and Table 26).

Fig. 23: Integrate crop production with agro-forestry to increase availability of fodder, timber and food crops to meet the household needs of the farmers

Table 26: Returns From Ocimum Cultivation Under Peach Based Agro-forestry System

Technology	Objective	Inputs	Cost of cultivation (₹/ha)	Gross return from AGF(₹/ha)	Net return from AGF(₹/ha)	BC Ratio
Stone fruit based Agroforestry system (<i>Ocimum</i> +Peach)	Effect of organic manure on biomass production of <i>Ocimum sanctum</i> under different fruit tree species	25 t/ha FYM	2,06,027	3,85,800	1,79,772	1:1.87
	Above ground biomass production of different fruit tree species	1,000 litres/ha Jeevamrut	2,33,361	4,17,719	1,84,358	1:1.79
	Economics of the system	No manure	1,88,027	2,88,377	1,00,350	1:1.53

Remarks

- Agro-forestry system is more beneficial than sole cropping system.
- Integration of medicinal and aromatic plants in orchards/ land-use system with the application of organic manure produced higher biomass and higher net returns.
- Net returns from sole crop of Oscimum are Rs 22,850/-

Livestock/Fisheries

Integrated farming comprising of crossbred, exotic or Indigenous milch breeds of dairy cattle/yak, fisheries, sheep, goats, backyard poultry, pig, emu and rabbits should be promoted for diversifying farm incomes. Advanced fingerlings fish should be used for increasing productivity in fisheries. Economics of various livestock based enterprises is given in Table 27.

Table 27: Comparative Economics of Livestock Farming

Enterprise	Unit	Returns/year (₹)	
Dairy farming	10 CB cows	1,76,350	
Dairy farming	10 Buffaloes	1,34,510	
Goat farming	30+2 Males	2,28,000	
Pig farming	11 Adults	2,70,000	
Fish farming	2.5 acre	93,600	
(carp culture)			

Source: PAU (2017)

Steps for promotion of livestock: goatry, poultry, fisheries

- Introduction of high yielding milchbreeds of buffaloes and cattle.
- > Establishment of service bulls at block level for

improvement of cattle breeds.

- > Organisation of timely health check-ups of animals.
- Establishment of milk chilling plants at strategic locations.
- Promotion of pure genetic breeds of sheep/goat and yak.
- Strengthening of traditional water bodies/rivulets for raising mahaseer and carp.

Processing and Value Addition for Reducing Post-Harvest Losses

Value addition through drying, processing, and product development can be used to increase farmers income (Figs. 24 to 26). Food processing should be adopted on a large scale to avoid post harvest losses, distress sales by the farmers, and to regulate market prices. Given here are some examples of food processing that would promote utilization of the farm produce, and increase the margins of farmers' income. There is a need to reduce post-harvest losses and promote value addition through:

- Promotion of cluster approach for efficient procurement and disposal of surplus fruits and vegetables.
- Establishment of mini-grading, packing and storage units.
- Promotion of Solar Dryers for processing excess vegetables/ fruits/ flowers at the farm/ village/ panchayat level.
- Establishment of small scale and mobile Processing Units for juice and pickle making of limited or heterogeneous stocks.
- Promotion of common resources on custom hire basis viz. Power tiller, mini thresher, etc.

Fig. 24: Drying and processing of vegetables/ fruits for stabilization of prices, minimizing crop loss, and value addition

Utilization of 2500 lts osmotic syrup	(45°B) for squash
Pulp @ 25% required 625 lts	= Rs 18,750.00
@ Rs 30 /lt	
Packaging bottles 4285Nos. @	=Rs 34,280.00
Rs 8/bottle	
Total input cost	=Rs 18,750+ 34,280= Rs
53,030 Returns from selling of apricot squash @70/bottles	=Rs 2,99,950.00

Net Return = Rs 2,99,950-53,030 = Rs. 2,46, 920.00

Total input cost for apricot processing (1000kg)= Rs 60,000+332.40+53,030= Rs1,13,362.40Return s from apricot processing= Rs1,00,000+11,884+2,99,950= Rs 4,11,834

Fig. 25: Value addition in apricots

Fig. 26: Utilization of tutti-frutti in different food products

Reducing Cost of Cultivation

- Promotion of well decomposed FYM, Vermicompost and Bio-fertilizers to minimize the use of chemical fertilizers.
- > Avoid broadcasting of seeds and fertilizers.
- Promotion of hand tools in agricultural and horticultural operations.
- Promotion of use of Power Tillers, Power Weeders, Paddy Threshers, Wheat Threshers, Maize Sheller, Wheel Hand Hoe, Manual/ Power operated Wheat/Paddy Reapers.
- Promotion of mulching (bio-degradable plastic) to maintain moisture and reduce intercultural operation cost.
- Promotion of pressurized irrigation techniques in horticultural crops.

Zero-Budget Natural Farming

Under the current farming scenario, the ever-increasing crop production costs seem to be a major cause of farmer distress. Thus, there is an urgent need to popularize the holistic farming technique of 'Zero Budget Natural Farming (ZBNF)' based on the use of farm based inputs (Fig. 27), developed by Sh. Subhash Palekar in Maharashtra. This farming system has been adopted successfully by several farmers across the country. This climate resilient, cost effective, ecologically safe and sustainable technique can help in reducing the market dependency of farmers for the farm inputs and finally enhance their self-reliance.

> Adopt holistic natural farming techniques involving

use of cow dung and urine to reduce production costs and enhance farmers' self-reliance.

- Promote generation of inputs at the farm level so as to reduce input costs.
- > Branding of natural farming produce.

Fig. 27: Use of *Jeevamrit* in Zero Budget Natural Farming

Off-Farm Sources of Income

- Promotion of subsidiary occupations such as poultry, fish farming, beekeeping, sericulture and mushroom production.
- Promotion of cultivation and collection of medicinal plants.
- Encouraging SHG's, NGO's for promotion of agriculture based economy by developing small scale enterprises (Candle making, Pickle making, Jam &

Jelly making, Woollen knitting and Handicraft).

- Establishment of distillation units for medicinal and aromatic plants.
- Promotion of Agri-clinics.

Market Interventions

- Promotion of Cluster approach/Contract farming for efficient crop management, and linking production centers with markets and value addition through processing.
- Reduction of post-harvest and in-transit losses by developing a chain of cold stores, reefer trucks in strategic alliance with agribusiness cooperatives.
- Strengthening of main and link roads, timely availability of transport vehicles, market intelligence, cold storages, warehouses, processing units, and promotion of grower societies (Co-operative marketing), and auction yards to increase net profits.
- Post-harvest technology for value addition, value added products of ginger, mango, citrus, garlic and vegetables, extraction of pectins, kernel oil of apricot, and value added/dried products of apple, plum, pear, apricot, fig and vegetables (Figs. 22, 23 and 24).

Online Management and Evaluation

Development of Mobile apps/ software for online management of introduce at the district level.

- Creation of link between district level committees of state line departments and KVK experts for field as well as online monitoring, evaluation and feedback.
- Development of e-Marketing and kiosk at district level to have information on surplus commodities at the block level.
- Organization of monthly review meetings to solve the problems related to farmers.
- Promotion of use of radio, TV talks and WhatsApp, etc. for effective implementation of programs.

Strengthening On-Farm and Off Farm Training Services

- Formal trainings (Fig. 28) and use of communication media to enhance farmers' knowledge for undertaking farming on scientific basis and generating employment opportunities during the off season.
- Orientation of farmers towards cashless transactions for purchasing inputs and sale of farm produce.
- Enhancing managerial and marketing skills of the farmers in production of high value cash crops.
- Research and development programs through public and private partnership will lead to doubling the farmers' income for food and national security.

Fig. 28: Training and skill development of farmers

Policy and Institutional Support

- Checking migration by attracting rural youth to agriculture by promoting high-tech precision agriculture as an industry.
- Land fragmentation has resulted in disruption of economies of scale, and hence, it should be mandatory

to define the minimum size of holdings that are economically viable.

- Cultivation of arable lands should be made mandatory, and the stray cattle and wild animals be controlled through policy/ legislation.
- > **Promote public -** private partnership.
- > **Define** quality standards for crop produce and link it

to prices.

- Minimum support price and buy back mechanisms to reduce on-farm losses.
- Promotion of e-trading, both for the agricultural inputs and the crop produce.
- **Reform Import/Export policies** to promote farming.
- Allotment of 'Nautaur land' out of the ceiling-surplus, and wastelands, especially in the tribal areas, to

increase the size of land holding to small farmers.

Levy a fee of Rs 10 per quintal of produce, and allocation of an equal amount by the state/ central Governments, and use the funds for supporting research and development in agricultural universities, as is the case in several developed countries in the world.

Institutional Support/Reforms for Doubling Farm Incomes			
Consolidation of land holdings	Define the minimum size of holding		
Cooperative/contract farming Need of the hour			
Minimum support price	Buy back mechanism to reduce on farm losses		
Farm mechanization Technological support for reducing labor input			
Crop insurance To mitigate the risk of climate change and crop failures			

Implementation Plan

The objective of doubling farmers' income can be achieved through proper implementation by different agencies involved and convergence of the various agencies. The implementation plan is given in Table 28.

Issue	Agency / organization/ stakeholders/' responsibilities
Seed replacement	SAUs, ICAR centers, Departments of Agriculture and Horticulture, Seed Certification agencies and NGOs. Need to develop linkages and partnerships with the private seed companies/ nursery producers for faster dissemination of technologies to the farmers.
Replacement of unsuitable crops and crop cultivars	Line Departments of Agriculture and Horticulture, KVKs and Extension departments of Agricultural Universities and NGOs.
Awareness of scientific seed treatment techniques	Line Departments, KVKs and Extension departments of Agricultural Universities should impart training to farmers on seed treatment.
Exposure of farmers to non-monetary inputs	Line Departments, KVKs and Extension departments of Agricultural Universities need to impart rigorous training on Zero Budget Natural Farming.
Plant population/high density plantings of fruit crops	Line Departments, KVKs and Extension departments of Agricultural Universities to impart training and ensure availability of good quality seeds/ planting materials.
Integrated nutrient management	Line Departments, KVKs and Extension departments of Agricultural Universities should impart training. SAUs and ICAR centres should undertake research on sustainable cropping systems.
Promoting precision agriculture	SAUs, line departments and KVKs should impart training to identified farmers and extension workers. SAUs and ICAR centres should take up focused research on alternative farming systems.
Prioritizing research on R&D	SAUs and ICAR centers.
Integrated weed management	KVKs, line departments and extension departments of Agricultural Universities should impart training on integrated weed management.
Integrated Pest /Disease management	State regulatory authorities need to seize spurious products from market. Strict control on cultivation of varieties recommended by the SAUs. Line Departments should impart training on IPM. SAUs/ICAR centres need to train input dealers and progressive farmers.

Table 28: Im	plementation	Plan ar	d Institutional	Responsibilities
--------------	--------------	---------	-----------------	-------------------------

<u>j</u>

The budget estimates for executing major initiatives are given in Annexure II.

Summary and Recommendations

Sustainability of the agricultural production systems, and food and nutritional security are the major challenges due to climate variability and climate change in Himachal Pradesh. Farming systems in Himachal are frequently threatened by floods, prolonged periods of droughts, pest outbreaks, hailstorms, low chilling in high hills and frost damage in the lower Shivalik Hills. Because of availability of food grains at cheaper rates in the public distribution system, and the aspirations of the youth for white collar jobs, crop damage by the stray cattle and wild animals, the people are giving up farming, as result, nearly 50% of the arable land is lying vacant, which is being increasingly infested by weeds. Therefore, there is an urgent need to develop cost-effective alternative farming systems to attract the youth to farming to increase farmers' income in Himachal Pradesh. There is an urgent need to:

- Improve irrigation from 19 to cover >50% of the area under cultivation through check dams-tanks.
- Integrate wheat/maize based cropping system with legumes and agro-forestry/horticulture.
- Timely availability of quality planting material of vegetables, flowers, fruits.
- Adopt high/ ultra high-density planting of fruit crops to increase productivity.
- Reduce post harvest losses, promote drying and value addition.
- Diversification of farm income through crop-livestock farming, beekeeping, sericulture, fisheries, mushroom cultivation, agro-forestry, floriculture and aromatic and medicinal plants.
- Adoption of protected cultivation, aquaponics and aeroponics.
- Consolidation of land holdings: Define the minimum size of land holdings.
- > Cooperative/contract farming: Need of the hour.
- Minimum support price: Buy back mechanism to reduce on-farm losses.
- Farm mechanization: Technological support for reducing labour input.
- Crop insurance: To mitigate the risk of climate change and crop failures.

References

- Birthal, P.S., D.S. Negi, and Devesh Roy. 2017. Enhancing Farmers' Income: Who to Target and How? Policy Paper 30. National Institute of Agricultural Economics and Policy Research (NIAP), New Delhi.
- Chand, R. 2017. Doubling Farmers' Income: Rationale, Strategy, Prospects and Action Plan, NITI Policy Paper 01/2017. National Institution for Transforming India, Government of India, New Delhi.
- Gandhi, V.P., and N.V. Namboodiri. 2004. Marketing of Fruits and Vegetables in India: A study Covering the Ahmedabad, Chennai and Kolkata Markets, IIMA-Working Paper (06-09). Research and Publication Department, Indian Institute of Management Ahmedabad, Gujarat.
- Jha, S.N., R.K. Vishwakarma, Tauqueer Ahmad, Anil Rai, and A.K. Dixit. 2015. Assessment of Quantitative Harvest and Post-Harvest Losses of Major Crops and Commodity in India. ICAR—All-India Coordinated Research Project on Post-Harvest Technology, ICAR-CIPHET.
- NSSO. 2014. Key Indicators of Situation of Agricultural Households in India, 70th Round (January–December 2013), Ministry of Statistics and Programme Implementation, National Sample Survey Office, New Delhi.
- PAU. 2017. Doubling Farmers' Income in Punjab by 2022. Punjab Agriculture University, Ludhiana, Punjab.
- Sarial, A.K. 2016. Doubling farmers' income: A model for mountainous and hilly region. *Him J Agric. Res.* 42: 101-117.
- Sharma, H.C. and Sharma, S. 2017. Alternative farming systems for increasing farmers income in North-western Himalayas. In: *National Conference* on Alternative farming Systems to Increase farmers Income, 19-21 Sept/2017, YSP University of Horticulture & Forestry, Nauni, Solan, Himachal Pradesh, India. pp 10-15..
- Sharma, HC. 2017. Strategies for Increasing Production and Productivity of Food Crops for Doubling Farmers Income in Himachal Pradesh. YSP University of Horticulture & Forestry, Nauni, Solan, Himachal Pradesh, India. 8 pp.

Annexure I: Technology Modules from Krishi Vigyan Kendras (KVKs) of Himachal Pradesh (Source: Programme Coordinators of Respective KVKs)

KVK Bilaspur

Land Use Pattern	
Total geographical area	1,11,776 ha
Cultivated area (net area sown)	29,187 ha
Area sown more than once	27,714 ha
Total cropped area	56,901 ha (195 %
	cropping intensity)
Area under irrigation	3,819 ha (13.08 %)
Area under forests	53,596 ha
(pastures and grazing land)	
Other land (under Govind	2,325 ha
Sagar lake)	
Polyhouses	55 ha

Statistics of Major Crops

Crop	Area	Production	Productivity
	(ha)	(MT)	(MT)
Maize	26,694	50,629	1.85
Rice 1465	2,508	1.44	
Wheat	23,807	42,212	2.24
Barley	173	300	1.71
Pulses (Chickpea	500	450	0.90
and Blackgram)			
Total food grains	52,639	96,099	1.82
Oilseeds	305	257	0.87
Potato	120	1,500	12.5
Ginger	215	2,150	8.57
Vegetables	3,040	83,005	27.30
Fruits	7,313	2,67	-
Mango:3,946,			
Pomegranate:380,			
K-lime: 599,			
Galgal: 251,			
Orange:249,			
Litchi: 533,			

Livestock Population in Bilaspur District

		-
Livestock	Numbers	
Cattle: Cross bread	Bulls:	4,928
	Cows:	21,242
Indigenous	Bulls:	19,688
	Cows:	2,034
Total cattle		47,892
Buffaloes	Male:	9,716
]]	Female:	90,870
Total buffaloes		1,00,586
Sheep		1,423
Goat		59,244
Pigs		2,900
Total livestock		2,10,439 (including
		horses and ponies,
		mules, donkeys, dogs)
Poultry		96,017

Technology Available

- Quality-seed production of pulses.
- Tuber crops production : Very effective in areas prone to monkey menace. KVK has developed the first ever variety of *Zimikand* (Elephant foot yam) variety in the state, 'Palam Zimikand-1'. A demonstration museum of tuber crops (Tapioca, Arrow root, Zimikand, Dioscorea spp. - Tardi, Dragel, Sweet potato, Colocasia) is being maintained. An AICRP on Tuber Crops is in operation at the KVK.
- *Kharif* onion production technology standardized and is being popularized among the farmers. Onion is available during lean period from October-December.
- Protected (Polyhouses) cultivation technology for vegetables standardized.
- Round-the-year vegetable nutrition garden/ demonstration unit established at the KVK.
- Post-harvest value addition technology available for preparation of pickle, jam, jelly, muraba, etc.
- Technology available for low cost organic agriculture.
- > Technology for preparation of 'Utility products out of

waste material' developed.

- A demonstration unit on vermi-compost preparation has been established at KVK.
- A low cost rain water harvesting structure (*kacha*) of >18,00,000/- litre capacity established, and is being demonstrated to the farmers.

Farmers' income may be increased if the following constraints are addressed in a focussed manner:

Increase in area under irrigation: From current 13.8% to at least 50%. This is important for crop diversification including quality seed production, protected cultivation, off-season vegetable production and cultivation of cash crops.

- Lowering input cost by educating farmers to adopt low cost natural/organic farming.
- Availability of farmer friendly small/handy farm tools and machinery for small and fragmented land holdings and terraced fields in the district.
- Assured marketing and minimum support price for the produce.

come
n (₹)
+13,560
0
0
to 57,000
0
0

Possible Income from Various Models

KVK Chamba

Success story from NICRA Village

A brief statement of the problem: NICRA village, Lagga in District Chamba is situated at a height of 1500-2,000 m amsl. The annual average rainfall is about 1,100 mm. During winters, this area receives moderate to high snowfall. This zone has a single crop in a year. Maize, cabbage, cauliflower, apple, beans and potato are the major crops grown in this area.

Farmers of this area have very small land holdings, that too without irrigation facilities. Before starting of NICRA project in this village, the farmers were earlier producing small amounts of maize to meet their domestic requirements.

Natural resources: The area has a highly rugged hilly terrain, and most of the rain water is lost by surface runoff resulting in very limited ground water storage. At present, 11 water harvesting structures with 60,000-80,000 litres storage capacity have been built to augument irrigation of crops.

Plan Implementation and Support

Alternative technologies: The agro-climatic conditions of this region are suitable for the cultivation of cabbage, cauliflower, beans, potato and apple. Under protected cultivation, the construction of polyhouse in the village started in 2011. The Department of Agriculture along with KVK identified the farmers for financial assistance and KVK provided the necessary inputs to the farmers.

Extension strategies: With an increase in the construction of polyhouses in the village, the training needs of extension functionaries and farmers for protected cultivation were identified by the KVK under the project, and organized 200 training programs in 2017 in which 3,000 farmers were trained for protected cultivation.

Facilitation of critical inputs: Establishment of one Custom Hiring Centre in the form of machinery and other agricultural inputs helped the farmers for improved production of various vegetable crops under open as well as protected conditions. **Technical support (consultancy, advisories, training, exposure visits, farmer and scientist interface):** Exposure visits of 60 farmers were conducted at CSK HPKV Palampur and PAU Ludhiana. Off campus training programmes were also conducted in the NICRA village.

Output

Initially, a group of 20 progressive farmers took up the cultivation of vegetable crops in eight villages of the region. Gradually, more and more farmers took up the cultivation of vegetable crops under protected condition. At present, there are 30 polyhouses of 1,300 sq m and more than 40 farmers are growing vegetables under protected and open field conditions.

Cultivation of vegetable crops in the area has resulted in increased income of Rs 5-6 lakhs per farmer in a single cropping season.

Crops	Pre-	Post-	% increase/
	NICRA	NICRA	decrease
Maize	57.68	35.00	- 39.30%
Potato	7.40	12.60	+70.30%
Apple	5.12	18.00	+251%
Cabbage	0.30	8.00	+2566%
Cauliflower	0.40	6.00	+1,400 %

Shift in Area under Cultivation of Different Crops at Lagga Village after KVK Intervention

Protected Cultivation of Vegetable crops in Village Lagga, Chamba District

KVK Hamripur

Main Cultivars of Different Crops Grown in the District

Cereals	Pulses	Vegetables	Fruits
Maize: Hybrids of	Blackgram:	Tomato: Hybrids Abhimanu, Avtar, Suri	Papaya: Arka
Kanchan, Proline	Him Mash-1UG	and Red	Prabhat, Arka
	-218, Naveen		Dark Red
	2,000+		
Wheat: HPW-236,	Chickpea: HC-2	Cauliflower: Hybrids (Megha, Barkha,	Mango: Dashehari
HPW-349HS 507	HPG-17	Fuziyama, Swati, Shweta and Pahuja-71	
Paddy: HPR-2143		Cucumber: Malini and Malav Kian,	Citrus: Kazgi
		Pusa-8, Purple cluster	lime and
		Cabbage: Hybrids Pushkar and Bahar	Galgal
		Broccoli: Hybrid Palam Smridhi	
		Peas: PB-89,Arkel	
		Radish: Pusa Himani and Japanese White	
		Capsicum: California Wonder, Natasha,	
		Orobille and Indira	
		Bottle gourd: Sharda	
		French bean: Phalguni and Arka Komal	
		Bitter Guard: Palli,	
		Onion: Palam Lohit, Nasik Red and Agrifound	

KVK Kangra

District Kangra has varied agro-climatic conditions from sub- tropical to temperate high hills. Precipitation is received both in the rainy and winter seasons. Over 1,500 mm rainfall is received during the rainy season. The elevation of the district ranges from 300 - 4,000 m amsl.

Major Farming Systems/Enterprises

Farming systems/enterprises
Cereal based: Maize-Wheat, Paddy-Wheat, Paddy-Potato, Maize-Mustard, Maize-Pulses and Pulses-Wheat
Vegetable based: Rainy, autumn season, winter season and summer season vegetables
Fruit crops: Mango, Citrus and Litchi
Dairy farming, Bee-keeping, mushroom cultivation, sheep and goat rearing

Description of Agro-Climatic Zones

Agro-climatic	Agro-ecological characteristics	Crops/ fruits/ livestock
zone		
Sub-tropical	Below 650 m amsl, undulating topography, low rainfall,	Maize, Paddy, Wheat, Urdbean,
zone (Zone-I)	hot summers, mild winters, light textured well drained soils	Cole Crops, Mustard, Cucurbits,
	with partial irrigation facilities.	Mango, Citrus, Pear, Buffaloes and
		Cows
Mid hills sub	651-1,800 m amsl, steep topography, low to medium rainfall	Maize, Paddy, Wheat, Potato,
-humid zone	hot summers and mild winters, neutral coarse textured,	Mustard, Urdbean, Vegetables,
(Zone-II)	pebble embedded, poor fertility soils.	Mango, Litchi, Buffaloes and Cows
High hills	Above 1,800 m amsl, steep topography, high rainfall and snow.	Potato, Barley, Rajmash, Rapeseed,
temperate	Cool summers and severe winters. Leached acidic soils	off-season vegetables (Cabbage,
wet zone	with low fertility.	Radish, Peas), Sheep, Goats,
(Zone-III)		Mules

Area, Production and Productivity of Major Crops

Сгор	Area (ha)	Production (t)	Productivity (q/ha)
Maize	58,050	1,45,632	25.08
Rice	34,310	68,612	20.00
Wheat	94,552	1,77,750	18.80
Barley	1,600	3,180	19.90
Millets	200	135	60.75
Kharif pulses	3,902	2,910	7.45
Rabi pulses	2,550	3,740	14.60
Kharif oilseeds	4,340	2,650	6.10
Rabi oilseeds	3,939	1,957	4.96
Vegetables	7,349	1,47,612	200.85
Fruit crops	36,225	86,308	21.00

Category	Population	Production (<i>l</i> /Lakh ton)	Productivity (<i>l</i> /animal)
Crossbred	1,53,000	0.93	5.51
Indigenous	2,44,000	0.20	1.61
Buffalo	1,56,000	0.65	3.01
Sheep	67,000	-	-
Goats	1,96,000	-	-
Poultry	2,63,000	-	-

Production and Productivity of Livestock, Poultry and Fisheries

Enterprises for Doubling Farmers' Income Dairy Farming of Indigenous Cows

District Kangra is the largest producer of milk in Himachal Pradesh. Majority of the farmers are rearing crossbred animals, which have high production potential, but are more susceptible to various parasites and diseases. Additionally, the milk produced by these crossbred animals is more likely to be of A1 type, which is considered to be less health promoting as compared to A2 milk produced by the indigenous dairy breeds such as Red Sindhi and Sahiwal. If a farmer starts a dairy comprising of indigenous cows and gets the milk certified to be A2 type from established labs, he/she can market the milk at a premium and earn more income. The urine and farmyard manure produced by these animals is also considered more useful for organic farming.

Fixed costs

Cost of indigenous animals 5 No.@ ₹ 50,000 each	₹ 2,50,000		
Cost of shelter/housing	₹ 1,00,000		
Depreciation @ 10%	₹ 35,000/year		
Running Cost			
Cost of fodder	Own resources + 1,00,000		
Cost of feed @ ₹ 2,000/animal/month	₹ 1,20,000		
Income			
Sale of certified A2 milk @ ₹ 60/ <i>l</i>	₹ 6,00,000		
Average 2,000 <i>l</i> /year/animal X 5			
Sale of Urine			
Sale of FYM/Compost/Vermicompost	Use at own farm		
Net income per annum	₹ 6,00,000 – 2,55,000 = 3,45,000 per year		

Broiler Poultry Farming for Higher Rturns

District Kangra is bestowed with highest poultry population in Himachal Pradesh. However, most of these birds are of local or improved backyard stocks, with low productivity. These are helpful to augment the farmers income, but not enough as an avenue for selfemployment. Broiler poultry farming comprising of commercial flocks such as Vencobb with a small marketing age of 40 to 45 days needs minimal investment and provides early returns for diversifying farmers' income.

Investment for 1,000 Broiler Unit

Fixed cost

Housing 1,000 sq ft @ ₹ 300/1,000 sq ft	3,00,000
Cost of equipment ₹ 50/bird	50,000
Depreciation @ 10 %	35,000

Running cost

Cost of chicks @ ₹ 30/chick	30,000
Cost of feed 4 Kg/bird @ ₹ 30/Kg	1,20,000

Income

Sale of mature birds @ ₹	2,00,000
100/kg live bwt	
Net Income per flock	₹ 50,000
No. of flocks per annum	6 (minimum)
Income per year	Rs 50,000
	X 6 = Rs 3,00,000
Net income per annum	₹ 3,00,000 - 35,000
	= 2,65,000

Mushroom Cultivation

Mushrooms are popular for their delicacy, flavour as well as food value. The agro-climatic conditions prevailing in many parts of the state provide ample scope for cultivation of mushrooms. White button mushroom (*Agaricus bisporous*) and Dhingri (*Pleurotus* spp.) are being cultivated in the state. Modern mushroom culture produces more proteins per unit area of land than any other form of agriculture. This also constitutes an excellent means of recycling the farm wastes. Since mushrooms are grown indoors, no additional land is required for their culture. Mushroom cultivation is labour intensive and can offer self-employment to unemployed educated and illiterate people. Mushrooms can be produced in large quantities within a short time.

Organic Manures – An Enterprise for Small and Marginal Farmers

Farmers can prepare organic manures at home with little guidance from experts. These organic manures can replace the requirement of chemical fertilizers, if used properly. Organic manures are good substitutes for chemical fertilizers in organic farming. The use of organic manures reduces the cost of cultivation and decreases the dependency on market. The use of organic inputs in crop cultivation improves the quality of the produce and fetches higher price for the produce.

Vermicompost

Vermicompost production of the composting process uses various species of earthworms, usually red earthworms, to create a mixture of decomposing vegetables or food waste, bedding materials, and vermicast. Vermicompost contains water-soluble nutrients and is an excellent nutrient-rich organic fertilizer and soil conditioner. It is used in farming and small-scale sustainable organic farming. The vermicompost unit can be constructed on any wasteland with an approximate initial investment of Rs 10,000. After the preparation of the vermicompost, it can be packed in one kg well labelled packs and marketed as such at an attractive price of Rs.10-15/- per kg in the cities.

Ghanjeevamrit

Like vermi-compost, *Ghanjeevamrit* is a type of organic manure rich in nutrients and beneficial microorganisms. The *Ghanjeevamrit* can be prepared in an open area with little investment. After the preparation of the *Ghanjeevamrit*, it can be packed in one kg well labelled packs and marketed as such at an attractive price of Rs. 15-20/- per kg to the users.

Jeevamrit

The *Jeevamrit* or *Jeevamrutham*, is a traditional organic fertilizer. It can be used as a fertilizer for plants every week, which boosts the plant growth and gives good yield. We need to use it within one week of preparation. The Jeevamrit unit can also be constructed in any wasteland with little investment. After preparation of *Jeevamrit*, it packed in one litre well labeled containers and marketed as such at an attractive price of Rs. 15-20/-per litre.

Matka Khad

Matka Khad is prepared from the domestic waste and has no cost or very little cost. The material used to prepare the manure is household or market organic waste. The *Matka Khad* can be packed in one kg well labeled containers and marketed as such at an attractive price of Rs. 15-20/- per kg.

KVK Kinnaur

The major crop of district Kinnaur is apple, which is planted on an area of 10,828.05 ha with production of 75,201.86 MT. The other important crops of the district are peas, rajmash, wheat, barley and buckwheat. The action plan for doubling farmers income in Kinnaur

district is discussed below.

Temperate Fruit Nursery Production

Maximum area under apple plantation in Kinnaur is of Delicious group, which are late, alternate in bearing habit and have low productivity. Nursery production of Spur type varieties, which are early in bearing, regular bearing habit with high productivity will be a major input to increase production and productivity of apple in Kinnaur district.

Intercropping with Vegetable Crops

Farmers grow rajmash, wheat, barley and buckwheat as an intercrop with apple. These crops are low in productivity. Productivity of vegetable crops is 10 to 25 times higher than pulses and cereal crops. Intercropping with high value off-season vegetables such as pea, cabbage and cauliflower can be exploited to increase

KVK Lahaul Spiti and Kinnaur District Main Crops

farmers income.

Mushroom Cultivation

Average landholding of the farmers in the district is very small which is approximately 1.37 ha. Farming of wheat and barley is done on an area of 192 and 1786 ha respectively. Straw of these crops can be used as a raw material for mushroom compost. KVK Kinnaur has started Mushroom Cultivation as an intervention in NICRA village and training is being provided to the farmers for mushroom production to diversify the farm income.

Bee Keeping

Fruit setting is major problem in apple in district Kinnaur due to inadequate number of pollinizers and pollinator fauna. Bee boxes should be placed in the orchards for effective pollination in apple. Training programmes on bee keeping are being given a top priority in the district.

Creals	Pulses	Vegetables	Fruits
Barley Rajmash		Pea (Azad Pea-1 and other mid	Apple Spur types and standard
		season varieties/hybrids), Potato	varieties, Apricot (Shakarpara)
		(Kufri Chandermukhi), Cauliflower	Almond (thin shelled, Non Pareil)
		(Hybrids) and Cabbagge (Hybrids)	

Cultivation of off- Season exotic vegetables (lettuce and broccoli)

- High potential due to off season production in Lahaul Valley.
- Good quality that fetches premium price.
- Availability of market in super markets and five star hotels.
- Less use of pesticides.

Net returns to farmers (₹): 3.75 to 5.60 lakh per hectare per year (single cropping season)

Сгор	Variety	Farming	Average	Gross input	Gross returns	Net returns	B : C ratio
			yield (q/ha)	(₹/ha)	(₹/ha)	(₹/ha)	(GR/GC)
Broccoli	Hybrid	Irrigated	180	1,59,330	7,20,000	5,60,670	4.51
Lettuce	Hybrid	Irrigated	220	1,74,795	5,50,000	3,75,205	3.14

Sale price of Broccoli: ₹ 40/kg; Sale price of Lettuce: ₹ 25/kg

KVK Mandi

Mandi is situated in the lap of Western Himalayas between 31°13′20″ to 32°04′30″ North latitude and 76°37′20″ to 77°23′15″ East longitude. The climate of the district is mostly sub-tropical in lower reaches and wet temperate in

upper reaches. Precipitation is received both in the rainy and the winter season. The temperature varies from 1° C at higher reaches during winter to 40° C in the valleys during the summer season. Average annual rainfall is

1,200 mm. The elevation of the district ranges from 650 - 4,000 m amsl.

Land Holdings

Particulars	No. of	Percentage	Holding
	families		size (ha)
Marginal	90,855	67.19	0.43
Small	28,752	21.26	1.40
Medium	15,535	11.49	2.65
Large	84	0.06	5.59
Landless	221	-	-

Status of Major Crops Grown in Mandi district

Crop	Area	Production	Productivity
	(ha)	(MT)	(Kg/ha)
Maize	48,681	1,37,282	2,820
Paddy	20,942	26,344	1,258
Wheat	66,373	1,21,193	1,826
Barley	3,839	7,002	1,824
Pulses	3,280	1,489	454
Oilseeds	1,692	1,261	747
Potato	2,419	34,484	14,300
Peas	5,002	64,026	12,800.1
Tomato	827	25,224	30,500.6
Beans	431	4,181	9,700.7
Onion	459	6,334	13,799.6
Garlic	458	5,862	12,799.1
Cabbage	977	30,482	31,199.6
Cauliflower	686	20,923	30,500.0
Radish	384	5,760	15,000.0
Ladyfinger	479	5,365	11,200.4
Cucurbits	361	6,498	18,000.0
Brinjal	333	7,093	21,300.3
Fruits:	28,438	52,288	-
(Apple: 16,311,			
Mango:4,769,			
Citrus:3,558,			
Stone fruits:			
3800)			

Land Use Pattern

Geographical area	3,95,000 ha
Population	9,77,999
Population density	228 persons/km ²
Literacy rate	75.24%
Sex ratio	1012
Development blocks	10
Panchayats	473
Total villages	3,338
Net cultivated area	95,390 ha
Gross cultivated area	1,60,419 ha
Net irrigated area	17,291 ha

Available Technological Interventions

- Raising quality nursery of fruits and vegetables.
- Quality-seed production of cereals, vegetables and pulses.
- Off-season vegetable production.
- Integrated orchard management.
- Protected (polyhouses) cultivation of vegetables.
- Integrated nutrient management in cereals, pulses and vegetables.
- Vermicompost preparation.
- Soil health management.
- Post-harvest and value addition for preparation of pickles, jam-jelly, muraba, etc.
- Round-the -year production of vegetables.
- Preparation of utility products from waste material.
- Soil moisture conservation with emphasis on rain water harvesting and its efficient use.
- Bio-intensive pest and disease management in vegetable and fruit crops.

Farmers' income may be increased by taking care of following constraints:

- Increase in area under irrigation: from current 18 % to at least 50 %. This is important for bringing more areas under cash crops, especially the vegetable crops for income generation.
- Lowering input cost by educating farmers to adopt low cost natural/organic farming.
- Availability of framer friendly small/handy farm tools and machinery for predominantly small and fragmented land holdings and terraced fields.
- Assured marketing of farm produce.
- Assured "profitable rate" of farm produce to the growers.

Models for Increasing Farmers Income in Mandi District

Enterprise	Proposed model	Cost (Rs)	Gross income	Net income	
			/annum (Rs)	/annum (Rs)	
Protected cultivation					
Capsicum (March-November)-	$250\mathrm{m}^2$	27,388	47,000	19,612	
Garden pea (November - February)		variable cost			
Tomato (March-October)-		26,198	86,300	60,102	
French bean (November-February)		variable cost			
Cucumber (March-August)-		32,849	50,000	17,151	
Tomato (September - February)		variable cost			
Sericulture	-	15,000-20,000	3,000	3,000	

Main Cultivars of Different Crops Grown in the District

Cereals	Pulses	Vegetables	Fruits
Maize: Hybrids of	Blackgram:	Tomato: Hybrids (US-981,	Apple: Royal Del. Golden Del.,
Kanchan, Proline	Him Mash-	Crystal 460, Abhimanu, Avtar,	Red Chief, Oregon Spur, Scarlet
and Niju Biju	1UG-218PDU-1 and	Naveen 2000+)	Spur and Super Chief
Wheat: HPW-	Palampur-93	Cauliflower: (Megha, Barkha,	Mango: Dashehari, Chausha,
236HPW-	Chickpea:	Fuziyama and Pahuja-71	Langra, Amarapalli, Parvati and
349 WH1105,	HC-2GNG-1581	(Superstar -71)	local varieties
HD 1080,HD	HPG-17, Swati and	Protected Conditions: Claudia,	Citrus: Kazgi lime and Galgal
3056, HS 507 HD	Shweta	Kian, Hillton, Kingstar and	Plum: Santa Rosa, Frontier and
1080, HD 3056		Multistar	Mariposa
and HS 507		Brinjal: Hybrids (Nisha, Nishant,	Guava: Alhabadi Safeda and
Paddy: HPR-2612,		Pusa Purple cluster, Nav Kiran and	Lucknow-49
Pusa-1509,		Sandhaya)	Litchi: Calcuttai and Dehradun
Arize-6129, HPR-		Cabbage: Hybrids (Varun, Pushkar,	Pear: Bartlett, Conference and
2143, HPR -1068		Bahar and Pragati)	Patharnakh
HPR-1156 and		Broccoli: Hybrids (Lucky and	Pomegranate: Kandhari Kabuli
US-312		Fiesta)	
		Peas: PB-89, AP-1, Arkel, GS-10	
		and AS-10	
		Radish: Pusa Himani, Japanese	
		White and Minu Early White	
		Capsicum open conditions: Bharat,	
		Mahabharat and California Wonder	
		Onion: Palam Lohit, Nasik Red and	
		Agrifound Dark Red	
		Garlic: GHC-1, Agrifound	
		Protected: Natasha, Swarna,	
		Orobille and Phaladin	
		Bottle gourd: Chakra, Shamhu,	
		Mulyam and Ganesh	
		French bean: Phalguni, Arka and	
		Komal	
		Potato: Kufri Jyoti	
		Cucumber: Hybrids Long Green,	
		Juhi, Noori, US 6125 and Sajan	

KVK Shimla

Doubling Farmers' Income Through High Density Apple Plantation

The elevation of the Shimla district varies from 600 m to 5,760 m amsl, and the climate varies from cold temperate to sub-tropical depending on the terrain. Apple is the most important fruit crop covering an area of 38,000 ha with a production of 4,99,422 MT. Traditionally, farmers produce delicious apple, but face the problem of low spur formation, poor fruit set, poor coloration at lower elevations and delayed maturity at higher elevations. Because of low density of pollinizing cultivars, production of apple fluctuates across years, despite an increase in area. There is a large diversity in apple varieties with self pollination spur type and coloured strains, which can be adopted according to the agro-

Poor coloration in Starking Delicious apple on seedling root-stock

Recommended Planting Distances for Apple

ecological conditions in different parts of the district.

High density planting of apple is one of the best options to the farmers for doubling their income. This technology is well established and widely adopted in the Europe since 1960s. In this system, we need to establish an apple orchard based on the semi-dwarfing and dwarfing rootstocks and use of spur type and colored cultivars of apple. High density system of planting is increasing in popularity among the farmers. Before switching to the high density planting on the clonal root-stocks, we need to survey the area for feasibility of this system as described below.

- The land must be flat or with little slope.
- Deep soil with no hard pan up to a depth of 1-2 ft.
- High fertility status of the soil.
- Availability of life saving irrigation.

A new spur variety (Oregon Spur II) plant bearing fruits

Cultivar	Root-stocks	Planting distance (m)	No. of plants/ ha
Non-spur	Seedlings	7.5	178
Spur	Seedlings	5.0	400
Non-spur	MM-111 & MM-109	6.0	278
Spur	MM-111 & MM-109	3.5	816
Non-spur	MM-106 & M-7	4.5	494
Spur	MM-106 & M-7	3.0	1,111
Spur	M-9	1.5	4,444

High density planting exhibits early fruiting and higher yields. The fruit quality improves with low cost on pruning, spraying, harvesting and other cultural operations. In this system, greater stress is placed on development of maximum number of fruiting branching, rather than structural branches. Most widely used rootstocks are M-27, M-9, M-26, M-4, MM-106, M-7 and MM-111. M-7 is a semi-dwarfing root-stock and it produces trees of 60- 65 % size as compared to that on apple seedlings. M-9 dwarfing root-stock is most widely used across the world, and is most suitable for high density planting.

Effect of High Density Planting of Apple

With the introduction of suitable spur type varieties and coloured strains of apple which are regular in bearing, the production of apple can be increased tremendously. Presently more than 25% area (around 8,000 ha), has already been shifted to spur types with the intervention of Krishi Vigyan Kendra, Shimla in collaboration with the Horticulture Department. The average yield of apple in Delicious variety, which was around 15-16 t/ha, has now increased to 25-30 t/ha due to introduction of new varieties. With the introduction of high density planting on clonal root-stocks, the fruit yield can be increased up to 50-60 t/ha.

High Density Apple Plantation

Variety	No. of plants/ha	Yield (t/ha)	Expenditure (₹)	Gross returns(₹)	Net returns(₹)	B : C Ratio
Starking Delicious on seedling root-stock	180	15	2,50,000	6,00,000	3,50,000	1:2.4
Spur type on seedling root -stock	400	30	5,00,000	18,00,000	13,00,000	1:3.6
Spur type/coloured strains on clonal root- stock M-9	4,400	50	6,00,000	30,00,000	24,00,000	1:5.0

- Yield is calculated on the basis of 20 kg/per apple box.
- Average sale price of Delicious variety of apple- ₹800 per box.
- Average sale price of Spur variety of apple (due to early maturity)- ₹1,200 per box.

Interventions Required

- Survey and marking of the areas suitable for high density plantation.
- Awareness among the farmers to adopt high density plantation.
- Availability of quality planting material on suitable root-stocks.
- Assisting farmers with proper spacing to make future orchard management easier.
- Conservation of soil moisture through mulching for production of quality fruits.
- Advising farmers for construction of rain water harvesting storage tanks, and installation of drip irrigation system for the success of high density planting.
- Use of fertigation for reducing labour and other input costs.
- Intercropping of orchards with high value vegetable/pulse crops for additional income and maintaining fertility.
- > Integrated nutrient management for sustaining the

soil health.

Canopy management for maintaining the balance between vegetative and reproductive growth

KVK Solan

Solan District of the Himachal Pradesh falls under Zones I and II, which include low and mid hill regions. The District is situated between 76° 42' to 77° 20' East Longitude and 30° 30' to 30° 15' North Latitude, with a total geographical area of 1,936 sq km. The District comprises of five developmental blocks of Nalagarh, Dharampur, Solan, Kandaghat and Kunihar. Solan district of Himachal Pradesh is the major supplier of tomato and bell pepper to the plains during summer and rainy seasons. The traditional farming systems in the mid hills comprises of Solanaceous vegetables (tomato and bell pepper) in summer, followed by cabbage, cauliflower and peas in the winters. Over the past few years, glut of tomato and bell pepper in the markets during summer and rainy season has resulted in lower prices, thereby resulting in low profits to the farmers. Moreover, intensive

cultivation of solanaceous crops has resulted in greater incidence of insects pests and diseases, especially soil borne diseases. Therefore, it has become important to diversify the tomato/capsicum production system with the introduction of exotic vegetables to double the farmers income. Cultivation of exotic vegetables has picked up in Himachal Pradesh over the past 4-5 years. Solan district provides the best opportunity for successful cultivation of the exotic vegetables due to prevalence of optimum growing conditions. Small land holdings, increased cost of cultivation with low yields of vegetables is attracting the farmers to adopt exotic vegetables for quality produce and high returns.

Specific Interventions Needed for Doubling Farmers' Income

- Conduct base line survey to identify major gaps and success indicators for cultivation of exotic vegetables in Nalagarh, Dharampur, Solan, Kandaghat and Kunihar.
- Selection of a cluster of villages suitable for cultivation of exotic vegetables (Lettuce, Celery, Parsley and Broccoli).
- Skill development of farmers by providing trainings in cluster villages for sustainable, remunerative and climate smart agri-enterprise of exotic vegetables.
- Establishment of model demonstration unit at the KVK and YSP-UHF campus at Nauni, as centres of learning.
- Evolving marketing linkages through the formation of grower's groups, and branding for enhanced profitability.
- Regular backstopping through mobile advisory for the timely solution of problems being faced by the farmers for cultivation of exotic vegetables.
- Impact assessment, publication of success stories, and development of farmer friendly literature for the benefit of farmers.

KVK Una

Una district is a submontane low hills. It has a lot of scope for Agriculture/Horticulture development. Maize is the main Kharif crop which is cultivated on an area of 32,157 ha, with a total production of 6,36,320 quintals. Wheat is the main Rabi crop, cultivated on an area of 34,836 ha, with a production of 6,96,670 quintals (2013-14). Vegetable and potato cultivation is being taken up in a big way by the farmers having assured irrigation, thereby, getting good returns per unit area. Since 85% of the farmers have small and marginal land holdings, therefore, there is a need for farmer centric model instead of corporate model so as to prevent usurpation of subsidies and resources by the big farmers.

To increase the farmers' income, an integrated approach should include strategies with active participation of farmers as well as the State Government,

- There is a need to increase crop productivity, cropping intensity, diversification (cultivation of high value crops like fruits, vegetables and flowers). With Swan river channelization, thousands of hectares of reclaimed land has been put under vegetable cultivation mainly under potato (for table purpose). There is a lot of scope for cultivation of onion, cucurbits, capsicum and tomato under the Hydroponic system. Production of cucumber and lettuce will be a handy tool for doubling the farmers' income in future.
- > Affordable and improved storage facilities.
- Livestock farming as an integrated component of farming system.
- Dissemination of information and adoption of cluster approach.
- Adoption of integrated farming system (dairy, poultry, organic manuring, mushroom cultivation and bee-keeping).
- ➢ Farm mechanization.
- Protected cultivation (gerbera, capsicum, tomato and cucumber) is being taken up by the farmers in a big way. Sustaining and strengthening of cultivation of these crops requires utmost attention in future.

<u>J</u>

Annexure II: Doubling Farmers Income in Himachal Pradesh: The Fact Sheet

Budget Estimates for Major Inputs Needed to Double Farm Income: Approximately ₹ 50,000 Cr)

Activity	No.of Units	Unit cost	Cost	Remarks
		(Crores)	(₹Crores)	
Micro-irrigation projects	100	100	10,000	Central Govt
Small scale irrigation/ check dams (every	500	25	12,500	State/Central Govt
5 to 10 km along the rivers				
Barrages/check dams across rivers	10,000	1	10,000	By State Govt.
(Khuds), rivulets (Nalas) and springs				
Water conservation and storage tanks on	50,000	0.1	5000	By the farmers/State Govt,
each farm				Banks
Seed production	10,000 q/year	0.01	500	By the Univ, Line Depts,
and distribution (annual)				Seed industry, Farmers
Production and distribution of nursery	100 Cr plants	0.05	500	By the Univ., Line Depts, Farmers,
plants for 5 years				Private industry
Establishment of orchards	10,000 cr		10,000	Farmers, Banks, Govt.
Beekeeping (focus on genetic diversity)	500 units of	0.01	25.00	Uni, Line Depts, Farmers/
	100 colonies			Industry, University to focus on
				diversification of genetic stocks
Mushrooms	250	0.01	25	Farmers, Industry, Govt agencies
				(50 composting units) University/
				ICAR to supply the spawn
Sericulture	50,000	0.01	500	Central Silk Board, State Govt,
	Farm Units			Private industry and farmers
Medicinal Plants	5,000 units	0.001	5	Farmers, Private Industries
Food Processing	100 units	0.1	10	Private Industry, Farmers and
(Small, medium,				Govt. Agencies
household units)				
Transport and	Road	Storage	Processing	Govt., Private Industry
storage	connectivity	facility	and drying	
Marketing	e-marketing	Market	Direct	Remove the middle men on the
		yards	marketing by	lines of Ryuthu Bazars in
			the farmers	Andhra Pradesh
Training and	(5,000)	0.001	500	Uni/Line Depts
Development				
*Research and Development for	2 Uni		500	Technological backstopping and
backstop				address the newer problems

Returns to investment in R&D in Agriculture/Horticulture stores over the next 25 years (5 times the investment, $\overline{\tau} > 10$ billion).

* Special funding for target areas to be provided by the State Govt to the Universities to provide seeds and seedlings to the farmers for doubling the farm incomes.

